

Task2.2 HL-LHC Optics and Lattice Configurations

Bernhard Holzer

for the WP2, Task2.2 Team

B. Dalena, A. Bogomyagkov, R. Appleby, A. Fauss-Golfe, J. Payet, A. Chance', K. Hock, M. Korostelev, R. deMaria, J. Resta, C. Milardi, L. Thompson, M. Thomas, A. Wolski

The HiLumi LHC Design Study is included in the High Luminosity LHC project and is partly funded by the European Commission within the Framework Programme 7 Capacities Specific Programme, Grant Agreement 284404.

" ... and do not show too many of this strange

zig zag plots "

Luminosity & Beam Optics

The HL-LHC Lattice & Optics has to establish β^* at IP1 & 5 to reach a "virtual luminosity" $\hat{L}(25ns) = 24 * 10^{34} cm^{-2} s^{-1}$

 $\hat{L}(50ns) = 26 * 10^{34} cm^{-2} s^{-1}$

 $\beta_x^* = \beta_y^* \approx 15 cm$ \rightarrow to small for the IR1 / 5 matching section LHC Upgrade Optics 4.5 → squeeze starts at neighboring sectors ("ATS"). 3.5 3 sig (mm) 2.5 2 1.5 0.5 IP8 IP1 IP2 0 -> gentle premonition: 5000 10000 15000 20000 25000 30000 Ω the lattice modifications used to optimise for smallest β^*

columnight not be adequate for β = 500...1000m

HL-LHC Parameter List

Parameter	nominal	25ns	50ns
N _b	1.15E+11	2.20E+11	3.5 <mark>0</mark> E+11
n _b	2808	2808	1404
N _{tot}	3.2E+14	6.2E+14	4.9E+14
beam current [A]	0.58	1.12	0.89
x-ing angle [mrad]	300	590	590
beam separation $[\sigma]$	9.9	12.5	11.4
β* [m]	0.55	0.15	0.15
ε _n [μm]	3.75	2.50	3
ε _L [eVs]	2.51	2.51	2.51
energy spread	1.20E-04	1.20E-04	1.20E-04
bunch length [m]	7.50E-02	7.50E-02	7.50E-02
IBS horizontal [h]	80 -> 106	18.5	17.2
IBS longitudinal [h]	61 -> 60	20.4	16.1
Piwinski parameter	0.68	3.12	2.85
geom. Reduction factor 'R'	0.83	0.3 <mark>0</mark> 5	0.331
beam-beam / IP without Crab Cavity	3.10E-03	3. <mark>28</mark> E-03	4.72E-03
beam-beam / IP with Crab cavity	3.75E-03	1.08E-02	1.43E-02
Peak Luminosity without leveling [cm ⁻² s ⁻¹]	1.0E+34	7.4E+34	8.5E+34
Virtual Luminosity: Lpeak/R [cm ⁻² s ⁻¹]	1.2E+34	24E+34	26E+34
Events / crossing without leveling	19 -> 28	210	475
Levelled Luminosity [cm ⁻² s ⁻¹]	-	5E+34	2.50E+34
Events / crossing with leveling	* 19 -> 28	140	140

 $\begin{array}{c} \leftarrow & x \text{-angle} \\ \hline & & \beta^* \\ \leftarrow & \varepsilon \end{array}$

 L_0

Lattice Modifications:

The Lattice has to be optimised to establish smallest β^* values at IP1 & 5. present design goal: $\beta^* = 15$ cm

larger triplet apertures (and D1, Q4, TAS / TAN etc)

$$g = \frac{2\mu_0 nI}{r^2}$$

re-optimise the position of matching quadrupoles

find space for orbit correctors / spool piece correctors

find space for crab cavities

establish a crossing scenario without changing the crab orbit

It is a long way to go:

LHC standard Optics, 55cm

what we are talking about:

four baseline ontics	ар. ⁹	grad ¹⁰	lengths ¹¹	β^*	N1 ¹²	N2 ¹³	t ¹⁴
based on assumptions on	[mm]	[T/m]	[m]	[cm]	[ppb]	[ppb]	[h]
based on assumptions on	150	144(83%Sn)	8.2 , 7.0	13.0	1.99E11	1.21E11	6.06
aperture & magnet technique	150	<u>96(83%</u> Ti)	10.8 , 9.0	17.0	2.03E11	1.36E11	5.24
\leq	▶ 140	150(80%Sn)	3.00, 6.8	15.0	2.01E11	1.29E11	5.64
	▶ 140	100(80% Fi)	10.5, 8.8	19.0	2.05E11	1.42E11	4.89
	▶ 120	170 3 3%Sn)	7.1 , 6.1	18.6	2.05E11	1.42E11	4.96
	→ 120	120(83%Ti)	9.3, 7.8	24.0	2.11E11	1.58E11	4.14
	85	160(78%Ti)	7.7, 6.6	44.0	2.41E11	2.11E11	2.33
	80	257(80%Sn)	4.8, 5.5	39.0	2.33E11	1.99E11	2.65

and the latest version, based on 150mm aperture - 140T/m gradient being finalised at the moment

Standard LHC

Beam Envelopes:

Standard LHC, β^* = 55cm, ϵ = 3.0 crossing angle = +/- 145 µrad

Lattice & Optics for LHC Standard

Standard LHC

Lattice:

Upgrade Lattice: SLHC V3.1b 150 T/m, 140mm

Beam Envelopes: HL-LHC, **β*= 15cm**, ε = 3.0

crossing angle = +/- 295 μrad

Standard LHC, 55cm

HL-LHC, 15cm

Upgrade Lattice: SLHC_V3.1b 150 T/m, 140mm

Lattice:

Upgrade Lattice: SLHC_V3.1b 150 T/m, 140mm

Lattice:

Upgrade Lattice: SLHC_V3.1b 150 T/m, 140mm

Lattice:

LHC Standard Lattice

HL-LHC Lattice V3.1b

longer triplet quadrupoles D1 shifted away from IP D1 sc and only 1 magnet D2 shifted towards IP for crab cavities $\Delta s = -15m$

Q5 shifted away from IP $\Delta s = +11m$

Upgrade Lattice: HL-LHC_V1.0 140 T/m, 150mm

Lattice:

LHC Standard Lattice

HL-LHC Lattice V1.0

even longer triplet quadrupoles Q1 and Q3 split in two magnets

Upgrade Lattice: HL-LHC V1.0 140 T/m, 150mm

Lattice:

LHC Standard Lattice

LHC Lattice V1.0

longer triplet quadrupoles Q1 and Q3 split in two magnets D1 shifted away from IP D1 sc and only 1 magnet D2 shifted towards IP for crab cavities $\Delta s = -15m$

Upgrade Lattice: HL-LHC_V1.0 140 T/m, 150mm

Lattice:

LHC Standard Lattice

HL-LHC Lattice V1.0

longer triplet quadrupoles Q1 and Q3 split in two magnets D1 shifted away from IP D1 sc and only 1 magnet D2 shifted towards IP for crab cavities $\Delta s = -15m$

Q5 shifted away from IP $\Delta s = +11m$

HL-LHC Optics in IR2 / IR8

Serious Optics changes in the matching section ... But no Lattice Changes foreseen so far. Ceterum Censeo: *β-leveling will be difficult*

Lattice Optimisation for Crab Cavities

court. B. Dalena

Study of additional quadrupoles at Q5 / Q6 / Q7 ...

add. Quad at Q5: no big change

Q4 / Q5 / Q6 in triplet configuration & add. Q7 ... allows for much larger β s at the Crab Cavities

CRAB side and beam	HL-LHC baseline [MV]	Best optimization [MV]
Horizontal L5 Beam 1	11.8	8.0
Horizontal R5 Beam 1	13.4	8.2
Horizontal L5 Beam 2	13.4	8.2
Horizontal R5 Beam 2	11.8	8.0

HL-LHC Lattice, Loss Factor & Crab Cavities

Lattice & Crab Cavities: Beam Orbit

Implication for layout

The best compromise between large beta function and beam separation is between D2 and Q4:

Standard Bump for Crossing angle & beam separation closes at Q5 ... and leads to (varying) orbit offsets at the crab cavity location. -> bump closure by strong dipole magnet at D2. -> Alternative: transverse cavity positioning feedback following the beam orbits

Lattice & Crab Cavities: Beam Orbit

- ULANC developed time-domain model so study LLRF behaviour including noise propagation
- Power requirement/position alignment:

Assuming $\Delta y = 0.2 \sigma_y$ results in 250 µm. RF power to compensate for this: 16 kW. • Simulation result: assuming instantaneous workshop 2012 amplitude reduces to small less Frascati Workshop 2012 significant. A. Dexter/ E. Jensen

strong orbit corrector needed in front of D2 for crossing angle bump & separation bump

first estimates: $\int Bdl = 6Tm / 1Tm$

Magnet	LHC	SLHC V3.1b	HL-LHC V1.0
triplet layout	standard machine	150T/m, 140mm	140T/m, 150mm
MQXA	22.226.2m		
MQXB	31.834.8m		
MQXB	38.341.3m		
MQXA	46.850.2m		
MBXW D1	5983m, 6 magnets		
MBRC D2	152.1157.9m		
MQY Q4	167.7169.6m		
MQML Q5	194.0196.5m		
MQML Q6	225.9228.4m		
MQM Q7A	259.6261.7		
MQM Q7B	263.6265.5		

	Magnet	LHC	SLHC V3.1b	HL-LHC V1.0
	triplet layout	standard machine	150T/m, 140mm	140T/m, 150mm
	MQXA	22.226.2m	MQXC 22.226.8m	
	MQXB	31.834.8m	MQXD 33.637.5m	
	MQXB	38.341.3m	MQXD 42.246.0m	
	MQXA	46.850.2m	MQXC 52.556.7m	
	MBXW D1	5983m, 6 magnets	MBXA 68.672.8m, 1 magnet	
	MBRC D2	152.1157.9m	MBRD 137142.9m	
	MQY Q4	167.7169.6m	MQYY 167.7169.6m	
	MQML Q5	194.0196.5m	MQYI 205.0207.5m	
	MQML Q6	225.9228.4m	MQML 225.9228.4m	
	MQM Q7A	259.6261.7	MQM 259.6261.7	
High Luminosi LHC	MQM Q7B	263.6265.5	MQM 263.6265.5	

_

Magnet	LHC	SLHC V3.1b	HL-LHC V1.0
triplet layout	standard machine	150T/m, 140mm	140T/m, 150mm
MQXA	22.226.2m	MQXC 22.226.8m	MQXC 1 22.225m MQXC 2 27.229.5m
MQXB	31.834.8m	MQXD 33.637.5m	MQXD 34.738.7m
MQXB	38.341.3m	MQXD 42.246.0m	MQXD 43.547.5m
MQXA	46.850.2m	MQXC 52.556.7m	MQXC 1 54.156.7m MQXC 2 58.961.2m
MBXW D1	5983m, 6 magnets	MBXA 68.672.8m, 1 magnet	MBXA 71.276.0m, 1 magnet
MBRC D2	152.1157.9m	MBRD 137.5142.9m	MBRD 137.5142.9m
MQY Q4	167.7169.6m	MQYY 167.7169.6m	MQYY 167.7169.6m
MQML Q5	194.0196.5m	MQYL 205.0207.5m	MQYL 205.0207.5m
MQML Q6	225.9228.4m	MQML 225.9228.4m	MQML 225.9228.4m
MQM Q7A	259.6261.7	MQM 259.6261.7	MQM 259.6261.7
MQ7B	263.6265.5	MQM 263.6265.5	MQM 263.6265.5

And finally B. Dalena et al: additional Quadrupole to support Q7

... crab cavitiy conditions

Magnet	LHC	Crab Cavity Story
triplet layout	standard machine	170T/m, 120mm
MQXA	22.226.2m	
MQXB	31.834.8m	
MQXB	38.341.3m	
MQXA	46.850.2m	
MBXW D1	5983m, 6 magnets	
MBRC D2	152.1157.9m	
MQY Q4	167.7169.6m	$MQYY \approx 167.9$
MQML Q5	194.0196.5m	$MQYL \approx 193.4m$
MQML Q6	225.9228.4m	$MQML \approx 220.3m$
		$MQML7 \approx 248.9253.7m$
MQM Q7A	259.6261.7	$MQM \approx 260$
MQM Q7B	263.6265.5	$MQM \approx 263.7$
		26

Reminder:

... all this is WORK IN PROGRESS

depending on the hardware available we will have to decide for one version and do the fine tuning / hardware follow up

