

**TE-VSC** 

Nov 30, 2012



# LEB Working Group Necessary timeline of LEB studies Experimental Work Packages Summary





The HiLumi LHC Design Study (a sub-system of HL-LHC) is co-funded by the European Commission within the Framework Programme 7 Capacities Specific Programme, Grant Agreement 284404.





M Gallilee TE-VSC Nov 30, 2012 Introduction to the LEB Working Group



•The working group shall be composed of a member from each experimental collaboration, plus vacuum, survey, collimation, accelerator physics, safety and machine coordination.

•Define, set priorities and follow-up the activities for the consolidation and upgrade (phase I and II) of the experimental vacuum sectors in the LHC. LEB was initially for phase I and II, now need to consider longer term timeline (LS3 and beyond) with close interface between experiments and machine.

•Mandate covers Q1 to Q1 for all new beam vacuum components and their associated supports, alignment, and access equipment. The mandate also extends to beam vacuum related issues of new experiments in the LHC machine regions.

Interface with collimation to evaluate impact on experiments.

•Approval shall be requested from the LMC [LHC Machine Committee].





TE-VSC

Nov 30, 2012



#### Approvals Summary Table

| Approval required                       | Responsible                                                 |
|-----------------------------------------|-------------------------------------------------------------|
| Aperture for high and low beta (LHC)    | BE/ABP (M.Giovannozzi)                                      |
| Aperture for high and low beta (HL-LHC) | BE/ABP (B.Holzer)                                           |
| Injection optics & Beam Dump            | TE/ABT (C. Bracco & B. Goddard)                             |
| Machine protection                      | BE/OP (J. Wenninger)                                        |
| Impedance Heating                       | BE/ABP (E.Metral, B.Salvant)                                |
| E-cloud, dynamic and static vacuum      | TE/VSC (V.Baglin, G .Lanza)                                 |
| Background                              | BE/ABP (H. Burkhardt)                                       |
| Collimation                             | BE/ABP (S. Redaelli)                                        |
| Positioning Tolerances                  | BE/ABP (J-C.Gayde, A Behrens)                               |
| Mechanical Tolerances                   | TE/VSC (M.Gallilee)                                         |
| Stability Tolerances                    | BE/ABP<br>(J-C.Gayde, A Behrens and Technical Coordinators) |



#### Familiar chart showing timeline for HL-LHC



L. Rossi HL-LHC-Coord\_03, 16/7/2012



#### TE-VSC

Nov 30, 2012



#### **Timeline of Studies**

|                                               |                           |       |      |                                        |            |              | Proj | ect S | chedu | le   |      |         |      |    |
|-----------------------------------------------|---------------------------|-------|------|----------------------------------------|------------|--------------|------|-------|-------|------|------|---------|------|----|
|                                               |                           | 2012  |      | 2013                                   |            | 2014         | 20   | 015   | 2016  | 2017 | 2    | 018     | 201  | 19 |
| Activity                                      | Requested completion date | S1 S2 | 2 S1 | S2                                     | S1         | S2           | S1   | S2    | S1 S2 | S1 S | 2 S1 | S2      | S1   | S2 |
| Consolidation                                 |                           |       |      |                                        |            |              |      |       |       |      |      |         |      |    |
| CMS central carbon support                    | End 2012                  |       |      |                                        |            |              |      |       |       |      |      |         |      |    |
| LHCb UX85/2 and UX85/3 support optimisation   | End 2012                  |       |      |                                        |            |              |      |       |       |      |      |         |      |    |
| New Supports for ATLAS                        | End 2012                  |       |      |                                        |            |              |      |       |       |      |      |         |      |    |
| Upgrade                                       |                           |       |      |                                        |            |              |      |       |       |      |      |         |      |    |
| ALICE smaller diameter beryllium chamber      | First study mid 2012      |       |      |                                        | 2e         | 54           |      |       |       |      |      | 20      | Su   |    |
| LHCb smaller diameter UX85/1                  | First study mid 2012      |       |      |                                        | 2          | 52 055       |      |       |       |      |      | 22      | 32.0 |    |
| New CMS and ATLAS forward chambers            | by LS2                    |       |      |                                        | \$ 5       | 3            |      |       |       |      |      | \$ 5 3  | S    |    |
| New CMS CT2 chambers                          |                           |       |      | ec.                                    | , <i>L</i> | Nise<br>Mise |      |       |       |      | e v  | N 45 5% |      |    |
| New ATLAS VJ chambers for LS2/HL-LHC          | by LS2                    |       |      | , Second                               | £ 0        | ,            |      |       |       |      | Ĩ,   | E e     | 1    |    |
| New TAS chambers for CMS and ATLAS            | 2015                      |       |      | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | 5 3        |              |      |       |       |      | 200  | 5 3     |      |    |
| TAS Alignment and bellows re-design           | 2015                      |       |      | 4 8                                    | 2º         |              |      |       |       |      | 4 8  | 2°      |      |    |
| Replace LHCb upstream copper chamber with alu | 2015                      |       |      |                                        | S          |              |      |       |       |      | -    | SC      |      |    |
| VELO Upgrade                                  | end 2012                  |       |      |                                        |            |              |      |       |       |      |      |         |      |    |
| Approval of new vacuum chamber materials      | 2017?                     |       |      |                                        |            |              |      |       |       |      |      |         |      |    |

#### Notes on current LEB studies

#### **ALICE Central Chamber:**

a) Aperture verified that for assumed parameters. Now to confirm with the machine (John Jowett) and the HI-LHC people, whether these parameters are OK to provide the upgraded heavy ion luminosity;

b) The questions whether the aperture is compatible with HL-LHC is still to be verified;

c) ALICE have to study the implications on background of the new beampipe.



#### TE-VSC

Nov 30, 2012



#### **Timeline of Studies**

|                                               |                           |      |      |    |      |      |       | Pr | oject | Sche | edul | e     |       |                                                                                 |      |    |
|-----------------------------------------------|---------------------------|------|------|----|------|------|-------|----|-------|------|------|-------|-------|---------------------------------------------------------------------------------|------|----|
|                                               |                           | 201  | 12   |    | 2013 |      | 2014  |    | 2015  | 20   | 016  | 2017  | 20    | 018                                                                             | 20:  | 19 |
| Activity                                      | Requested completion date | S1 9 | S2 5 | S1 | S2   | S1   | S2    | (o | S1 S2 | S1   | S2   | S1 S2 | S1    | S2                                                                              | S1   | S2 |
| Consolidation                                 |                           |      |      |    |      |      |       |    |       |      |      |       |       |                                                                                 |      |    |
| CMS central carbon support                    | End 2012                  |      |      |    |      |      |       |    |       |      |      |       |       |                                                                                 |      |    |
| LHCb UX85/2 and UX85/3 support optimisation   | End 2012                  |      |      |    |      |      |       |    |       |      |      |       |       |                                                                                 |      |    |
| New Supports for ATLAS                        | End 2012                  |      |      |    |      |      |       |    |       |      |      |       |       |                                                                                 |      |    |
| Upgrade                                       |                           |      |      |    |      |      |       |    |       |      |      |       |       |                                                                                 |      |    |
| ALICE smaller diameter beryllium chamber      | First study mid 2012      |      |      |    |      | Se l | 2 5   |    |       |      |      |       |       | 20                                                                              | SU   |    |
| UHCb smaller diameter UX85/1                  | First study mid 2012      |      |      |    |      | 4    | S - S |    |       |      |      |       |       | 5 5                                                                             | 21.0 |    |
| New CMS and ATLAS forward chambers            | by LS2                    |      |      |    | •    | \$ 5 | S?    |    |       |      |      |       | \$    | \$ 5 3                                                                          | 3    |    |
| New CMS CT2 chambers                          |                           |      |      |    | eo,  | 16   | %ise  |    |       |      |      |       | eo'   | 1.<br>1.<br>1.<br>1.<br>1.<br>1.<br>1.<br>1.<br>1.<br>1.<br>1.<br>1.<br>1.<br>1 |      |    |
| New ATLAS VJ chambers for LS2/HL-LHC          | by LS2                    |      |      |    | L.   | E .  | ,     |    |       |      |      |       | 1 de  | E.o                                                                             |      |    |
| New TAS chambers for CMS and ATLAS            | 2015                      |      |      |    | es.  | 5 3  |       |    |       |      |      |       | ese a | 5 3                                                                             |      |    |
| TAS Alignment and bellows re-design           | 2015                      |      |      |    | 4 3  | 2º   |       |    |       |      |      |       | 4 4   | he                                                                              |      |    |
| Replace LHCb upstream copper chamber with alu | 2015                      |      |      |    |      | S    |       |    |       |      |      |       |       | 2C                                                                              |      |    |
| VELO Upgrade                                  | end 2012                  |      |      |    |      |      |       |    |       |      |      |       |       |                                                                                 |      |    |
| Approval of new vacuum chamber materials      | 2017?                     |      |      |    |      |      |       |    |       |      |      |       |       |                                                                                 |      |    |

#### Notes on current LEB studies

#### LHCb UX85/1 and VELO:

- a) UX85/1 has been studied and is compatible with LHC and HL-LHC parameters. LHCb studying background in experiment;
- b) VELO upgrade study. To be presented at LMC on 12 Dec 2012.



#### TE-VSC

Nov 30, 2012



#### **Timeline of Studies**

|                                               |                           |      |      |      |      |        |      | Pro | ject | Sch | edul | e     |                                        |        |      |    |
|-----------------------------------------------|---------------------------|------|------|------|------|--------|------|-----|------|-----|------|-------|----------------------------------------|--------|------|----|
|                                               |                           | 201  | 2    |      | 2013 |        | 2014 |     | 2015 | 20  | 016  | 2017  | 2                                      | 018    | 201  | 19 |
| Activity                                      | Requested completion date | S1 9 | 52 S | 51 5 | 52   | S1     | S2   | S   | 1 S2 | S1  | S2   | S1 S2 | S1                                     | S2     | S1   | S2 |
| Consolidation                                 |                           |      |      |      |      |        |      |     |      |     |      |       |                                        |        |      |    |
| CMS central carbon support                    | End 2012                  |      |      |      |      |        |      |     |      |     |      |       |                                        |        |      |    |
| LHCb UX85/2 and UX85/3 support optimisation   | End 2012                  |      |      |      |      |        |      |     |      |     |      |       |                                        |        |      |    |
| New Supports for ATLAS                        | End 2012                  |      |      |      |      |        |      |     |      |     |      |       |                                        |        |      |    |
| Upgrade                                       |                           |      |      |      |      |        |      |     |      |     |      |       |                                        |        |      |    |
| ALICE smaller diameter beryllium chamber      | First study mid 2012      |      |      |      |      | 2      | 25   |     |      |     |      |       |                                        | 20     | Su   |    |
| LHCb smaller diameter UX85/1                  | First study mid 2012      |      |      |      |      | 2      | 7.5  |     |      |     |      |       |                                        | 22     | 30.0 |    |
| New CMS and ATLAS forward chambers            | by LS2                    |      |      |      | 4    | \$ 5   | S?   |     |      |     |      |       |                                        | \$ 5 2 | 5    |    |
| New CMS CT2 chambers                          |                           |      |      |      | 60   | · 5. ; | S'   |     |      |     |      |       | e co                                   | 1 S 3  |      |    |
| New ATLAS VJ chambers for LS2/HL-LHC          | by LS2                    |      |      |      | - E  | E e    |      |     |      |     |      |       | Ĩ,                                     | E e    | 1    |    |
| New TAS chambers for CMS and ATLAS            | 2015                      |      |      |      | es,  | 5 3    |      |     |      |     |      |       | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | 5 3    |      |    |
| TAS Alignment and bellows re-design           | 2015                      |      |      |      | 4 2  | 2º     |      |     |      |     |      |       | 4 8                                    | 2º     |      |    |
| Replace LHCb upstream copper chamber with alu | 2015                      |      |      |      |      | S.     |      |     |      |     |      |       |                                        | SC.    |      |    |
| VELO Upgrade                                  | end 2012                  |      |      |      |      |        |      |     |      |     |      |       |                                        |        |      |    |
| Approval of new vacuum chamber materials      | 2017?                     |      |      |      |      |        |      |     |      |     |      |       |                                        |        |      |    |

#### Notes on current LEB studies

#### **Experimental supports:**

a) Current and new experimental supports will be discussed for LS1 as part of the experimental layouts.





Thanks to Bernhard Holzer for the slides



#### TE-VSC

Nov 30, 2012

#### **Radiation Protection**

| Area Classification    | Dose limit | Ambient dose equivalent rate (permanent place) | Ambient dose equivalent rate<br>(low-occupancy areas) |
|------------------------|------------|------------------------------------------------|-------------------------------------------------------|
| Non-designated area    | 1 mSv/y    | < 0.5 μSv/h                                    | < 2.5 μSv/h                                           |
| Supervised area        | 6 mSv/y    | < 3 µSv/h                                      | < 15 µSv/h                                            |
| Simple controlled area | 20 mSv/v   | < 10 µSv/h                                     | < 50 µSv/h                                            |
| Limited stay area      | 20 110 17  |                                                | < 2 mSv/h                                             |
| High radiation area    |            |                                                | < 100 mSv/h                                           |
| Prohibited area        |            |                                                |                                                       |
|                        |            |                                                | > 100 mSv/h                                           |



Vacuum

Surfaces Coatinas

ATLAS workers are in category B (CERN rule  $\rightarrow$  Do not exceed 6 mSv/ year)

ATLAS dose goal → Do not exceed 2 mSv/ year → No exposure more than 50 µSv / day

 Restrict activities for a few hours (<u>max 20 hours per year</u>) in regions between 20 and 50 μSv/hour and under strict supervision

→ Make use of individual shielding if possible to gain a factor 2 (2 cm Fe equivalent gains a factor 2)

→ Robotize interventions in regions > 50  $\mu$ Sv / hour

Experiment specific radiation goals – example for PT1

(Extracted from ATLAS workshop – Olga Beltramello)

https://espace.cern.ch/lebc/SitePages/Home.aspx

|             |                           |                                           |                                                      | TE Technology                  |
|-------------|---------------------------|-------------------------------------------|------------------------------------------------------|--------------------------------|
| CERN        | M Gallilee<br>Estimated r | TE-VS<br>adiation evolut                  | SC Nov 30, 2012<br>Nov 30, 2012                      | Vacuum<br>Surfaces<br>Coatings |
| First estim | ated* ATLAS dos           | se rates After 42 days                    | s cooling for LS1, LS2, and LS3                      |                                |
| Zone        |                           | Period                                    | Maxi Dose (micro Sv/h) per system at beam line (R=0) | at contact,                    |
| VA          |                           | LS1 (steel)<br>LS2 (alu)<br>LS3 (alu)     | 150<br>30<br>100                                     |                                |
| VT          |                           | LS1 (steel)<br>LS2 (alu)<br>LS3 (alu)     | 120<br>24<br>80                                      |                                |
| VJ          |                           | LS1 (steel)<br>LS2 (steel)<br>LS3 (steel) | 180<br>350<br>1200                                   |                                |
| TAS+JN      |                           | LS1<br>LS2<br>LS3                         | 300<br>600<br>2000                                   |                                |

These estimated doses highlight the need for reduced intervention times and remote handling.

\*First estimates based on the following assumed run conditions: For LS1: 20 fb-1, max pick luminosity 6x10^33; For LS2 : 70 fb-1, max pick luminosity 10^34; For LS3 : 350 fb-1, max pick luminosity 2 x 10^34.



#### TE-VSC

Nov 30, 2012



#### **Timeline of Studies**

|                                               |                           |       |      |       |      |      | Pro | ject S | Schee | lule  |      |     |                   |     |    |
|-----------------------------------------------|---------------------------|-------|------|-------|------|------|-----|--------|-------|-------|------|-----|-------------------|-----|----|
|                                               |                           | 2012  |      | 2013  |      | 2014 | 2   | 2015   | 201   | .6 20 | 17   | 20  | 18                | 20: | 19 |
| Activity                                      | Requested completion date | S1 S2 | 2 S1 | S2    | S1   | S2   | S1  | L S2   | S1 9  | 52 S1 | S2 5 | S1  | S2                | S1  | S2 |
| Consolidation                                 |                           |       |      |       |      |      |     |        |       |       |      |     |                   |     |    |
| CMS central carbon support                    | End 2012                  |       |      |       |      |      |     |        |       |       |      |     |                   |     |    |
| LHCb UX85/2 and UX85/3 support optimisation   | End 2012                  |       |      |       |      |      |     |        |       |       |      |     |                   |     |    |
| New Supports for ATLAS                        | End 2012                  |       |      |       |      |      |     |        |       |       |      |     |                   |     |    |
| Upgrade                                       |                           |       |      |       |      |      |     |        |       |       |      |     |                   |     |    |
| ALICE smaller diameter beryllium chamber      | First study mid 2012      |       |      |       | 2    | 25   |     |        |       |       |      |     | 20                | Su  |    |
| LHCb smaller diameter UX85/1                  | First study mid 2012      |       |      |       | ¢.   | 5,5  |     |        |       |       |      |     | 5 3               | 5%  |    |
| New civis and ATLAS forward chambers          | by LS2                    |       |      |       | \$ 5 | S'N  |     |        |       |       |      | ×   |                   | 5   |    |
| New CMS CT2 chambers                          |                           |       |      | 20    | 2 6  | %    |     |        |       |       |      | eq. | <u>م</u> ر<br>الج |     |    |
| New ATLAS VJ chambers for LS2/HL-LHC          | by LS2                    |       |      | L.    | E 9  |      |     |        |       |       |      | Ę,  | E e               | 1   |    |
| New TAS chambers for CMS and ATLAS            | 2015                      |       |      | ese e | 5 3  |      |     |        |       |       |      | es. | , 'J              |     |    |
| TAS Alignment and bellows re-design           | 2015                      |       |      | 4 5   | 2°   |      |     |        |       |       |      | 4 2 | he                |     |    |
| Replace LHCb upstream copper chamber with alu | 2015                      |       |      |       | S.   |      |     |        |       |       |      |     | 2C                |     |    |
| VELO Upgrade                                  | end 2012                  |       |      |       |      |      |     |        |       |       |      |     |                   |     |    |
| Approval of new vacuum chamber materials      | 2017?                     |       |      |       |      |      |     |        |       |       |      |     |                   |     |    |

#### Notes on current LEB studies

#### CMS and ATLAS linked with HL-LHC:

- a) New forward chambers will be studied for CMS and ATLAS in order to accommodate the new beam size;
- b) New TAS chambers and alignment systems will be studied to allow for the new radiation environment;
- c) From studies so far, in terms of the machine, impedance and vacuum seem to be the most critical areas of focus for stable HL-LHC operation.



See EDMS node: <u>https://edms.cern.ch/document/1065775/4</u> for all Work Packages





#### M Gallilee TE-VSC Nov 30, 2012 Experimental areas – ATLAS WPs

#### Vacuum Surfaces Coatings

### Highlighted future LEB studies linked to HL-LHC

| WP #  | Experiment | Title                              |
|-------|------------|------------------------------------|
|       |            | Spare for small diameter beryllium |
| 2.1.1 | ATLAS      | pipe                               |
| 2.1.3 | ATLAS      | ALARA for interventions            |
| 2.2.8 | ATLAS      | Development of 47mm ID flange      |
|       |            | New beryllium VI chamber +         |
| 2.2.2 |            | supports                           |
|       |            | New, aluminium VA chambers +       |
| 2.2.3 |            | supports                           |
|       |            | New, aluminium VT chambers +       |
| 2.2.4 | ATLAS      | supports                           |
|       |            | Development of new forward         |
| 2.2.7 | ATLAS      | chambers                           |
|       |            | New VJ chambers for TAS            |
| 2.3.1 | ATLAS      | replacement                        |
| 2.3.2 | ATLAS      | New AFP Hamburg beampipe           |



#### NOTE1: Supports for ALARA

NOTE2: Already approved VI with reduced aperture to be installed in LS1

NOTE3: For ALARA and aperture increase

See EDMS node: <u>https://edms.cern.ch/document/1065775/4</u> for all Work Packages

|             |                   |                                  |                                                                                                              | TE Technology                  |
|-------------|-------------------|----------------------------------|--------------------------------------------------------------------------------------------------------------|--------------------------------|
| CERN        | M Gallilee        | TE-VSC                           | Nov 30, 2012                                                                                                 | Vacuum<br>Surfaces<br>Coatings |
|             | E                 | xperimental areas – CMS          | WPs                                                                                                          |                                |
|             |                   |                                  | MUON CHAMBERS INNER TRACKE                                                                                   | R CRYSTAL ECAL                 |
|             |                   |                                  |                                                                                                              |                                |
|             |                   |                                  |                                                                                                              |                                |
| Highlighter | d future I FR stu | dies                             |                                                                                                              |                                |
| linked to H | IL-LHC            |                                  |                                                                                                              |                                |
|             |                   |                                  |                                                                                                              |                                |
| WP#E        | Experiment        | Title                            |                                                                                                              |                                |
|             |                   | Spare endcap pipe                | SUPERCONDUCTING COIL<br>Total Weight : 14,500 t.<br>Overall diameter : 14,60 m<br>Overall diameter : 14,60 m |                                |
| 2.1.3       | CMS               | Study interventions under vacuum | Magnetic field : 4 Tesla                                                                                     |                                |
| 2.1.4 (     | CMS               | Integrity of forward chambers    | ← NOTE1: For ALAF                                                                                            | RA                             |
|             |                   | Second gas injection system      |                                                                                                              |                                |
|             |                   | New beryllium central pipe +     | NOTE2: Already                                                                                               | approved new                   |
| 2.2.1 (     | CMS               | supports                         | central chamber                                                                                              | with reduced                   |
| 2.2.4 (     | CMS               | New CT2 pipes                    | aperture to be in                                                                                            | stalled in LS1                 |
|             |                   | New forward pipes for TAS        |                                                                                                              |                                |
| 2.3.1 (     | CMS               | replacement                      | $\leftarrow$ NOTE3: For ALAF                                                                                 | RA and                         |
| 2.3.2       | CMS               | New HPS Hamburg beampipe         | aperture increas                                                                                             | е                              |
|             |                   | Development of AlBeMet Trial     |                                                                                                              |                                |
| 2.3.3 (     | CMS               | Chamber                          | $\leftarrow$ NUIE4: FOR ALAF                                                                                 | <b>Υ</b> Α                     |

See EDMS node: <u>https://edms.cern.ch/document/1065775/4</u> for all Work Packages

|                           |                                |                  |             |                               | 1 Contraction Technolo         |
|---------------------------|--------------------------------|------------------|-------------|-------------------------------|--------------------------------|
| CERNY                     | M Gallilee<br>Experimental ar  | TE<br>Pas – I F  | -vsc        | Nov 30, 2012<br>& Shared W/Ps | Vacuum<br>Surfaces<br>Coatings |
|                           | Experimental a                 |                  |             |                               |                                |
| Highlighte<br>linked to F | d future LEB studies<br>IL-LHC |                  |             |                               |                                |
|                           | r anartura incrasca            | WP #             | Experiment  | Title                         |                                |
| NOTE1. FC                 | ir aperture increase —         | → <mark>-</mark> | LHC machine | New TAS chambers              |                                |
|                           |                                |                  | LHC machine | New remote flange f           | or TAS                         |
|                           |                                |                  | LHC machine | New VAX sub-sector            |                                |
|                           |                                |                  |             | Remote flanges and            | handling for                   |
|                           |                                | -                | LHC machine | experiments                   |                                |
| NOTE2: Fo                 | or ALARA                       | →_               | LHC machine | TAS alignment and t design    | bellows re-                    |
|                           |                                |                  |             |                               |                                |

| WP #                | Experiment  | Title               |
|---------------------|-------------|---------------------|
| 2.2.5 (ATLAS) 2.2.2 | ALICE,      | Development of next |
| (CMS + ALICE)       | ATLAS, CMS  | gen. chambers       |
|                     | ALICE,      |                     |
| 2.2.6 (ATLAS) 2.2.3 | ATLAS, CMS, | Development of new  |
| (ALICE, CMS, LHCb)  | LHCb        | materials           |

See EDMS node: <u>https://edms.cern.ch/document/1065775/4</u> for all Work Packages





#### Summary

- Work Packages and LEB studies outlined with respect to HL-LHC upgrade;
- Vacuum chamber apertures in ATLAS and CMS forward regions must be studied to accommodate new beam after LS3;
- Smaller beampipes will be installed in ATLAS and CMS during LS1 need to include a study from the machine side to determine whether these are fully acceptable for HL-LHC;
- For the Hi-Lumi experiments, evolution of activation will mean the need to study remote handling and improved intervention times;
- <u>HL-LHC upgrade is two-way agreement between experiments and</u> machine. Both need to work for HL-LHC to be a success, for example ATLAS and CMS central chambers!



TE-VSC

Nov 30, 2012



# Many thanks for your attention!

## **Questions?**

20 https://espace.cern.ch/lebc/SitePages/Home.aspx