
Grid Technology

CERN IT Department
CH-1211 Geneva 23

Switzerland

www.cern.ch/it

DB CF CF GT

Overview of DMLite

Ricardo Rocha

(on behalf of the LCGDM team)

EMI INFSO-RI-261611

Grid

Technology Reasoning for DMLite

• ~1.5 years ago we performed a full DPM evaluation

– Using PerfSuite, out testing framework
– https://svnweb.cern.ch/trac/lcgdm/wiki/Dpm/Admin/Performance

– (most results presented in the workshop come from this framework too)

• It showed the system had significant bottlenecks

– Performance

– Code maintenance (and complexity)

– Extensibility

2

https://svnweb.cern.ch/trac/lcgdm/wiki/Dpm/Admin/Performance

Grid

Technology Dependency on NS/DPM daemons

• All calls to the system had to go via the daemons

– Not only user / client calls

– Also the case for our frontends (HTTP/DAV, NFS, XROOT, …)

– Daemons were a bottleneck, and did not scale well

• Short term fix (available since 1.8.2)

– Improve TCP listening queue settings to prevent timeouts

– Increase number of threads in the daemon pools
• Previously statically defined to a rather low value

• Medium term (available since 1.8.4, with DMLite)

– Refactor the daemon code into a library

3

Grid

Technology Dependency on NS/DPM daemons

• All calls to the system had to go via the daemons

– Not only user / client calls

– Also valid for our new frontends (HTTP/DAV, NFS, XROOT, …)

– Daemons were a bottleneck, and did not scale well

• Short term fix (available since 1.8.2)

– Improve TCP listening queue settings to prevent timeouts

– Increase number of threads in the daemon pools
• Previously statically defined

• Medium term (available since 1.8.4, with DMLite)

– Refactor the daemon code into a library

4

Grid

Technology GET asynchronous performance

• DPM used to mandate asynchronous GET calls

– Introduces significant client latency

– Useful when some preparation of the replica is needed

– But this wasn’t really our case (disk only)

• Fix (available with 1.8.3)

– Allow synchronous GET requests

• DMLite has the same sync behavior (but faster)

5

Grid

Technology GET asynchronous performance

• DPM used to mandate asynchronous GET calls

– Introduces significant client latency

– Useful when some preparation of the replica is needed

– But this wasn’t really our case (disk only)

• Fix

– Allow synchronous GET requests

6

Grid

Technology Database Access

• No DB connection pooling, no bind variables

– DB connections were linked to daemon pool threads

– DB connections would be kept for the whole life of the client

• Quicker fix (available with 1.8.6)

– Add DB connection pooling to the old daemons

– Good numbers, but needed extensive testing… took some time

• Medium term fix (available since 1.8.4 for HTTP/DAV)

– DMLite, which includes connection pooling

– Among many other things…

 7

Grid

Technology Database Access

• No DB connection pooling, no bind variables

– DB connections were linked to daemon pool threads

– DB connections would be kept for the whole life of the client

• Quicker fix

– Add DB connection pooling to the old daemons

– Good numbers, but needs extensive testing…

• Medium term fix (available since 1.8.4 for HTTP/DAV)

– DMLite, which includes connection pooling

– Among many other things…

 8

Grid

Technology Dependency on the SRM

• SRM imposes significant latency for data access

– It has its use cases, but is a killer for regular file access

– For data access, only required for protocols not supporting
redirection (file name to replica translation)

• Fix (all available from 1.8.4)

– Keep SRM for space management only (usage, reports, …)

– Add support for protocols natively supporting redirection
• HTTP/DAV, NFS 4.1/pNFS, XROOT

• And promote them widely…

• Investigating GridFTP redirection support (seems possible!)

9

Grid

Technology

Future Proof with DMLite

Grid

Technology Future Proof with DMLite

• DMLite is our new plugin based library

• Meets goals resulting from the system evaluation

– Refactoring of the existing code

– Single library used by all frontends

– Extensible, open to external contributions

– Easy integration of standard building blocks
• Apache2, HDFS, S3, …

https://svnweb.cern.ch/trac/lcgdm/wiki/Dpm/Dev/Dmlite

11

https://svnweb.cern.ch/trac/lcgdm/wiki/Dpm/Dev/Dmlite

Grid

Technology

• DMLite is our new plugin based library

• Meets goals resulting from the system evaluation

– Refactoring of the existing code

– Single library used by all frontends

– Extensible, open to external contributions

– Easy integration of standard building blocks
• Apache, HDFS, S3, …

https://svnweb.cern.ch/trac/lcgdm/wiki/Dpm/Dev/Dmlite

Future Proof with DMLite

12

https://svnweb.cern.ch/trac/lcgdm/wiki/Dpm/Dev/Dmlite

Grid

Technology

• DMLite is a single library used by all DPM components

• In production today

– Already used by HTTP/DAV, soon by all frontends

• We’ve opened DPM to other systems

– Many widely used in the industry (HDFS, S3, …)

– And the work has just started

• Clean, well defined interfaces

– And APIs in different languages, much easier to contribute

• Performance improved drastically!

• Plugin details come next…

13

Summary and Status

