





# $\begin{array}{c} P{\rm YTHIA} \ 8 \\ {\rm and} \ {\rm its} \ {\rm tuning} \ {\rm parameters} \end{array}$

# Torbjörn Sjöstrand

Department of Astronomy and Theoretical Physics Lund University, Lund, Sweden

LHCb Generators Tuning mini-Workshop, Bucharest (Lund), 22 November 2012

#### Development overview

Ambition (relative to PYTHIA 6)

- Meet experimental request for C++ code.
- House cleaning  $\Rightarrow$  more homogeneous.
- More user-friendly (e.g. settings names).
- Better match to software frameworks (e.g. card files).
- More space for growth.
- Better interfaces to external standards.

Reality

- Work begun autumn 2004.
- 3 years at CERN  $\Rightarrow$  good progress.
- First release autumn 2007.
- Since then: slower progress, but gradually things get done.
- Usage is taking off, at long last.

Team members Stephen Mrenna Stefan Prestel Peter Skands

Former members Stefan Ask Richard Corke

Contributors Robert Ciesielski Nishita Desai **Philip Ilten** Tomas Kasemets Mikhail Kirsanov

. . .

#### Physics overview



All of this is needed, + more  $\Rightarrow$  can only get more complicated

# (Semi)recent progress

- More SUSY processes & other exotica & improved SLHA
- Long-lived *R*-hadrons
- Hidden Valley showers and hadronization
- Rescattering in MPI (but effects small)
- An *x*-dependent proton size in MPI (see tuning)
- MPI in diffractive system, central diffraction, MBR model
- Masses updated to RPP 2012, BR's of light hadrons coming LHCb help with charm and bottom BR's would be great!
- Several PDF's available internally, mainly LO ones
- $\tau$  decays with full spin correlations (Philip Ilten)
- SlowJet lightweight substitute for FastJet
- UserHooks/MergingHooks expanded with many options
- Progress on weak parton showers, i.e.  $W^{\pm}/Z^0$  emission
- VINCIA plug-in will offer more sophisticated showers

#### Interfaces

- Les Houches Event Files or runtime LHA interface
- LHAPDF or other external PDF libraries
- SUSY LHA input
- External random number generator
- External beam momentum and vertex spread
- Semi-internal matrix elements or resonance widths (MadGraph 5 can generate code for inclusion in Pythia)
- External parton showers (e.g. VINCIA)
- External decay of selected particles (EvtGen?)
- User hooks: step into generation process, e.g. to veto
- Particle/resonance gun (e.g. decay Higgs in isolation)
- HepMC output
- Combine with RIVET analyses

# Matching/merging at LO or NLO

- Built-in NLO+PS for many resonance decays  $(\gamma^*/Z^0,W^\pm,t,H^0,$  SUSY,  $\dots)$
- Some built-in +1 matching ( $\gamma^*/{
  m Z}^0/{
  m W}^\pm+1$  jet)
- Default max scale gives fairly good QCD jet rates, also for gauge boson pairs, top pairs (with damping), SUSY
- Accepts just about any valid Les Houches Event input (but matching at an ill-defined "scale")
- POWHEG interface extends on "scale" matching to showers
- no MC@NLO interface, but Frixione et al working on it
- MLM matching code for ALPGEN input recently introduced, coming for MadGraph5
- CKKW-L LO matching (tested for MadGraph5 input)
- CKKW-L NLO matching coming (for POWHEG input)
- Special tunes for CKKW-L schemes planned

(subjectively, absolute or compared with Herwig++ and Sherpa)

- + fair selection og built-in processes ready to go
- no built-in ME generator (need e.g. MadGraph)
- matching/merging/NLO usually not automatic
- $\pm\,$  parton showers of comparable quality
- + most sophisticated & robust MPI framework
- + models for diffractive events
- + most sophisticated & robust hadronization framework
- no QED in hadronic decays (need e.g. Photos)
- + interfaces & many options  $\Rightarrow$  flexible
- + user-friendly, well documented, many examples
- + generally comparing well with LHC data ...
- $-\ \ldots$  but known discrepancies, e.g. flavour composition

#### Tuning parameters: hard process

- SoftQCD:all for "total cross section"
- HardQCD:all hard QCD  $2 \rightarrow 2$  processes
  - + PromptPhoton:all hard  $2 \rightarrow 2$  with 1 or 2 photons
  - + Charmonium:all, Bottomonium:all, +
- PhaseSpace:pTHatMin preferably > 20 GeV (no  $p_{\perp} \rightarrow 0$  damping, unlike SoftQCD)
- $\bullet$  <code>PhaseSpace:mHatMin, :mHatMax</code> preferably for hard  $2 \rightarrow 1$
- PDF:pSet, + choice of proton PDF (LO!), also LHAPDF
- PDF:useHard, :pHardSet separate PDF for hard process
- SigmaProcess:alphaSvalue  $lpha_{
  m s}(M_{
  m Z})$
- SigmaProcess:alphaSorder running to 0th, 1st, 2nd order
- SigmaProcess:Kfactor multiplicative (scale-independent)
- SigmaProcess:renormScale2, + renormalization scale
- SigmaProcess:factorScale2, + factorization scale
- StandardModel:alphaEMmZ, +  $\alpha_{em}(M_Z)$
- StandardModel:sin2thetaW, + weak parameters, CKM

#### Tuning parameters: parton showers

Final-state timelike shower mainly constrained by LEP data.

- TimeShower:alphaSvalue, +  $\alpha_{
  m s}(M_{
  m Z})$
- TimeShower:pTmaxFudge, + matching to hard process
- TimeShower:pTmin lower QCD cut-off
- TimeShower:pTminChgQ lower QED cut-off for q (not  $\ell$ )
- TimeShower:dampenBeamRecoil fixes doublecounting
- SpaceShower:alphaSvalue, +  $\alpha_{
  m s}(M_{
  m Z})$
- SpaceShower:pTmaxFudge, + matching to hard process
- SpaceShower:pTORef, :ecmRef, :ecmPow, :pTmin smooth turn-off and sharp cut-off for QCD emissions
- SpaceShower:pTminChgQ lower QED cut-off for q (not  $\ell)$
- SpaceShower:rapidityOrder order emissions both in p<sub>⊥</sub> and rapidity (too restrictive?)

#### Tuning parameters: underlying event

- MultipartonInteractions:alphaSvalue, +  $\alpha_{
  m s}(M_{
  m Z})$
- MultipartonInteractions:processLevel MPI processes
- MultipartonInteractions:pTmaxMatch matching to hard
- MultipartonInteractions:pTORef, :ecmRef, :ecmPow

$$\frac{\mathrm{d}\hat{\sigma}}{\mathrm{d}p_{\perp}^2} \propto \frac{\alpha_s^2(p_{\perp}^2)}{p_{\perp}^4} \rightarrow \frac{\alpha_s^2(p_{\perp 0}^2 + p_{\perp}^2)}{(p_{\perp 0}^2 + p_{\perp}^2)^2} \text{ with } p_{\perp 0}(E_{\mathrm{CM}}) = p_{\perp 0}^{\mathrm{ref}} \times \left(\frac{E_{\mathrm{CM}}}{E_{\mathrm{CM}}^{\mathrm{ref}}}\right)^{\epsilon}$$

Note: cutoff value crucial for MPI, unlike ISR/FSR

- MultipartonInteractions:bProfile, :coreRadius, :coreFraction, :expPow, :a1 impact-parameter profile, single Gaussian, double Gaussian, overlap  $exp(-b^p)$ , Gaussian with radius  $a(x) = a_0(1 + a_1 \ln(1/x))$
- BeamRemnants:primordialKThard  $\sigma(k_{\perp})$  for hard processes
- BeamRemnants:reconnectRange colour reconnection

# Tuning parameters: Total and diffractive cross sections

- SigmaTotal:setOwn, :sigmaTot, :sigmaEl, :sigmaXB, :sigmaAX, :sigmaXX, :sigmaAXB force set cross sections
- SigmaDiffractive:dampen, :maxXB, :maxAX, :maxXX, :maxAXB limit rise of diffractive cross sections
- SigmaTotal:zeroAXB, :sigmaAXB2TeV central diffraction
- Diffraction:PomFlux diffractive model
- Diffraction:probMaxPert mix pert./nonpert.
- Diffraction:sigmaRefPomP  $\sigma_{Pp}$  in MPI (inverse to activity)
- Diffraction:bProfile, :coreRadius, :coreFraction, :expPow impact-parameter profile (no x-dependent option)

# Tuning parameters: hadronization

Supposedly fixed at LEP by universality, but  $\ldots$ 

- StringZ:aLund, :bLund, :aExtraDiquark, :rFactC, :rFactB longitudinal momentum sharing
- StringPT:sigma transverse width
- StringFlav:probStoUD, :probQQtoQ, :probSQtoQQ, :probQQ1toQQ0 s/ud, qq/q, sq/qq, qq1/qq0 composition
- StringFlav:mesonUDvector, :mesonSvector, :mesonCvector, :mesonBvector V/PS meson ratio
- StringFlav:etaSup, :etaPrimeSup  $\eta, \eta'$  suppression
- StringFlav:popcornRate, :popcornSpair, :popcornSmeson baryon-meson-antibaryon topologies
- ParticleDecays:limitTau0, :tau0Max, + handover to detector simulation
- ParticleDecays:mixB, :xBdMix, :xBdMix x<sub>d</sub>, x<sub>s</sub>

#### Some in-house tunes

| Parameter                                   | 2C    | 2M     | 4C    | 4Cx   |
|---------------------------------------------|-------|--------|-------|-------|
| SigmaProcess:alphaSvalue                    | 0.135 | 0.1265 | 0.135 | 0.135 |
| SpaceShower:rapidityOrder                   | on    | on     | on    | on    |
| SpaceShower:alphaSvalue                     | 0.137 | 0.130  | 0.137 | 0.137 |
| SpaceShower:pT0Ref                          | 2.0   | 2.0    | 2.0   | 2.0   |
| ${\tt MultipartonInteractions:alphaSvalue}$ | 0.135 | 0.127  | 0.135 | 0.135 |
| MultipartonInteractions:pTORef              | 2.320 | 2.455  | 2.085 | 2.15  |
| MultipartonInteractions:ecmPow              | 0.21  | 0.26   | 0.19  | 0.19  |
| MultipartonInteractions:bProfile            | 3     | 3      | 3     | 4     |
| MultipartonInteractions:expPow              | 1.60  | 1.15   | 2.00  | N/A   |
| MultipartonInteractions:a1                  | N/A   | N/A    | N/A   | 0.15  |
| BeamRemnants:reconnectRange                 | 3.0   | 3.0    | 1.5   | 1.5   |
| SigmaDiffractive:dampen                     | off   | off    | on    | on    |
| SigmaDiffractive:maxXB                      | N/A   | N/A    | 65    | 65    |
| SigmaDiffractive:maxAX                      | N/A   | N/A    | 65    | 65    |
| SigmaDiffractive:maxXX                      | N/A   | N/A    | 65    | 65    |

R. Corke & TS, JHEP 03 (2011) 032, JHEP 05 (2011) 009

# Some ATLAS tunes

Start from Tune 4Cx + SpaceShower:rapidityOrder = off.

- t1 = MultipartonInteractions:pTORef
- t2 = MultipartonInteractions:ecmPow
- t3 = MultipartonInteractions:a1
- t4 = BeamRemnants:reconnectRange

| name-PDF                 | t1   | t2   | t3   | t4   |
|--------------------------|------|------|------|------|
| MB tune A2-CTEQ6L1       | 2.18 | 0.22 | 0.06 | 1.55 |
| MB tune A2-MSTW2008LO    | 1.90 | 0.30 | 0.03 | 2.28 |
| UE tune AU2-CTEQ6L1      | 2.13 | 0.21 | 0.00 | 2.21 |
| UE tune AU2-MSTW2008LO   | 1.87 | 0.28 | 0.01 | 5.32 |
| UE tune AU2-CT10         | 1.70 | 0.16 | 0.10 | 4.67 |
| UE tune AU2-MRST2007LO*  | 2.39 | 0.24 | 0.01 | 1.76 |
| UE tune AU2-MRST2007LO** | 2.57 | 0.23 | 0.01 | 1.47 |

Tunes with NLO PDFs omitted: dangerous at low  $p_{\perp}$ ! See ATLAS note ATL-PHYS-PUB-2012-003 (August 2012). (Previous generation in ATL-PHYS-PUB-2011-009 (July 2011).) Tune:pp selects prepackaged set of parameter changes.

| 1  | original values before any tunes |
|----|----------------------------------|
| 2  | Tune 1                           |
| 3  | Tune 2C (CTEQ 6L1)               |
| 4  | Tune 2M (MRST LO**)              |
| 5  | Tune 4C                          |
| 6  | Tune 4Cx                         |
| 7  | ATLAS MB tune A2-CTEQ6L1         |
| 8  | ATLAS MB tune A2-MSTW2008LO      |
| 9  | ATLAS UE tune AU2-CTEQ6L1        |
| 10 | ATLAS UE tune AU2-MSTW2008LO     |
| 11 | ATLAS UE tune AU2-CT10           |
| 12 | ATLAS UE tune AU2-MRST2007LO*    |
| 13 | ATLAS UE tune AU2-MRST2007LO**   |

Changes to some parameters can be done *after* Tune:pp line. Tune:ee similar but less extensive for FSR and hadronization.

# Example ATLAS results



Not so easy to do appreciably better than in-house 4C and 4Cx, for better or worse!

## MCnet & MCPLOTS

"General-purpose event generators for LHC physics", A. Buckley et al. (MCnet), Phys. Rep. 504 (2011) 145, compares PYTHIA 8.145 tune 4C, Herwig++, SHERPA. Note: new EU funding to MCnet  $\Rightarrow$  new activity)



Many comparisons on MCPLOTS: http://mcplots.cern.ch/

# Summary and outlook

- $\bullet~{\rm Pythia}~6$  is winding down
  - currently supported but not developed
  - not supported after long shutdown 2013–14
- PYTHIA 8 is the natural successor
  - is (sadly!) not yet quite up to speed in all respects
  - $\bullet$  but for most physics clearly better than  $\operatorname{Pythia} 6$
- Advise/plea to experimentalists
  - $\bullet\,$  gradually step up  $\mathrm{PytHIA}$  8 usage to gain experience
  - $\bullet\,$  if you want new features then be prepared to use  $\mathrm{Pythia}\,8$
  - provide feedback, both what works and what does not
  - help with charm and bottom decay tables if you can
  - make relevant data available in RIVET
  - do your own tunes to data and tell outcome

News list:

http://www.hepforge.org/lists/listinfo/pythia8-announce

The work is never done!

#### Appendix: check on kinematical cuts setup

Smearing from parton showers, underlying event, hadronization  $\Rightarrow$  need "fiducial cuts": generate in overestimated region. Question: How to check that choice makes sense? Answer: plot (generated and) accepted events

as a function of  $\widehat{p}_{\perp} = \texttt{pythia.info.pTHat}()$ 

