

ILCDIRAC – A grid solution for the ILC VO

Christian Grefe¹, Stéphane Poss¹, André Sailer¹, Andrei Tsaregorodtsev²

¹CERN, PH-LCD, ²CNRS

- Scalable mass production tool for:
- ▶ Physics performance of the detectors for the CLIC Conceptual Design report[1],
- ► ILC Detailed Baseline Design report[2]
- ▶ High level interface to run linear collider applications on the GRID: make it simple for the users
- Software management: users need not to care how an application runs nor where
- Overlay of pile-up: needed for realistic physics performance studies, user interface must remain simple
- File cataloging of output files with support for meta data (not using the LCG File Catalog)

- DIRAC[3] was designed for the LHCb experiment and allows extensions.
- ► Proven to be scalable
- ▶ Provides full GRID solution: Workload Management, File Catalog, Production System, etc.
- Active support in developing ILCDIRAC by the DIRAC developers
- ▶ ILCDIRAC is the second large scale extension of the DIRAC system
- ▶ The DIRAC File Catalog[4] was developed with ILCDIRAC as the first user

Job Framework

- Many different applications need to run and chained for
- Software packages are interfaced through common IO format and event data model LCIO[5]

Example of Full Simulation Software Chain

What is an Application?

- It converts something into something, or produces something out of nothing
- It is defined by a name and a version
- It needs instructions on what to do
- ► It produces a log file
- It can produce something that would be used by another application in the same job: \rightarrow linking between applications necessary
- Output of any application can be linked to the input of any application
- ILC use case: 14 different applications, they all need to be connectable with each other

- ▶ CLIC machine induced background and physics background[6]: $\gamma\gamma \rightarrow$ hadrons ▶ at CLIC 3TeV, 60×3.2 events need to be overlaid per signal event
- Too time consuming to simulate those directly
- Chosen to add them during digitization: reuse of background events
- Needed procedure to obtain the background files without blocking the storage services: Background files contain 2000 events
- ► Can do only 10 signal event with one file, need 20 files per signal file
- ► Not many files available, so many reuses of the same files
- ▶ Fewer Storage Elements compared to Computing Elements, SEs were under heavy stress

Solution:

- ► Local data access when possible: direct SE access for CERN, IN2P3, RAL-LCG2 using xrdcp or dccp when possible, but no SRM access.
- ► All other sites use SRM access
- ► Ideally: replicate the background samples to ALL SEs and use local access only
- Fine scheduling of jobs:
- Limit the number of running jobs requiring overlay files

Current status:

- Applications deployed by each job if necessary
- Use of Shared Software Area where possible
- Installation by pilot jobs in local area if needed
- Dependency relations handled
- Production steering files treated like software
- Locking of shared area to avoid conflicting installations

Prospects:

► Use CVMFS to have centrally managed software

▶ Keep possibility to install local copy if cache not up to date, or CVMFS not available

- ILCDIRAC is stable, only bug fixes and adaptation to developments of the core DIRAC packages
- Successful completion of large mass productions for the CLIC CDR and ILC DBD
- More than 100 users with new users joining every week

- Dedicated service to count the number of jobs
- Limit the number of files to copy
 - Background events may be reused for physics events, as they are put in a random bunch crossing around the signal event

Jul 2010 Nov 2010 Mar 2011 Jul 2011 Nov 2011 Mar 2012 Jul 2012	Nov 2012 Mar 2013 Jul 2013	Jan 2011 May 2011 Sep 201	1 Jan 2012 May 2012 Sep 2012 Jan 2	2013 May 2013 Sep 2013	Jan 2011 May 2011 Sep 2011 Jan 2012 May 2012 Se	p 2012 Jan 2013 May 2013 Sep 2013
Max: 8.68, Min: 0.01, Average: 4.29, Current:	8.68	Max	: 6,742, Min: 0.07, Average: 910, Current: 8.03		Max: 8.56, Min: 0.05, Average: 4.55, Cur	rent: 8.56
□ LCG.CERN.ch 2.6 ■ LCG.Bristol.uk	0.3	LCG.CERN.ch	31.6% LCG.UKI-SOUTHGRID-RALPP.uk	2.6%	Execution Complete	6.2
LCG.DESY-HH.de 1.0 LCG.IN2P3-IRES.fr	0.3	LCG.DESY-HH.de	18.2% LCG.IN2P3-IRES.fr	2.6%	Application Finished With Errors	1.1
LCG.Manchester.uk 0.5 LCG.Brunel.uk	0.2	LCG.Manchester.uk	5.1% LCG.KEK.jp	2.3%	Input Sandbox Download	0.5
LCG.RAL-LCG2.uk 0.5 LCG.DESYZN.de	0.2	LCG.Brunel.uk	4.3% LCG.RAL-LCG2.uk	2.2%	Input Data Resolution	0.4
LCG.IN2P3-CC.fr 0.4 LCG.UKI-NORTHGRID-LI	V-HEP.uk 0.2	LCG.QMUL.uk	4.2% LCG.UKI-NORTHGRID-LIV-HEP.uk	1.6%	Pending Requests	0.3
LCG.QMUL.uk 0.4 LCG.UKI-SOUTHGRID-R/	ALPP.uk 0.2	LCG.GRIF.fr	4.2% LCG.Freiburg.de	1.6%	Received Kill signal	0.0
LCG.UKI-LT2-IC-HEP.uk 0.3 LCG.KEK.jp	0.2	LCG.IN2P3-CC.fr	3.6% LCG.FNAL GPGRID 1.us	1.4%	Job has exceeded maximum wall clock time	0.0
LCG.GRIF.fr 0.3 LCG.LAPP.fr	0.1	LCG.UKI-LT2-IC-HEP.uk	3.2% LCG.LAPP.fr	1.1%	Uploading Job Outputs	0.0
LCG.FNAL_GPGRID_1.us 0.3 plus 28 more		LCG.Bristol.uk	2.7% plus 26 more		plus 21 more	
	Generated on 2013-10-04 09:29:42 UTC			Generated on 2013-10-04 09:33:03 UTC		Generated on 2013-10-04 11:19:17 UTC

2013.

- Site administrators for fast interactions in case of issues DIRAC developers for the positive discussions and rapid tixes,
- ► The users for the encouraging feedback

 $imes 10^7$

Storage	Total	CLIC	ILC	# Files	
CERN	1PB	961 TB	40 TB	5 4 2 5 0 9 4	
DESY	170 TB	0	160 TB	752 949	
KEK	150 TB	76 GB	149 TB	644 365	
RAL	147 TB	4 T B	89 T B	1444776	
PNNL	25 TB	0	26 TB	739 509	

[1] L. Linssen, A. Miyamoto, M. Stanitzki, and H. Weerts, eds. Physics and Detectors at CLIC: CLIC Conceptual Design Report. CERN, 2012. ANL-HEP-TR-12-01, CERN-2012-003, DESY 12-008, KEK Report 2011-7, arXiv:1202.5940. [2] T. Behnke, et al. The International Linear Collider Technical Design Report - Volume 1: Executive Summary.

[3] A. Casajus, et al. Status of the dirac project. Journal of Physics: Conference Series, vol. 396(3) p. 032107, 2012.

[4] A. Tsaregorodtsev and S. Poss. Dirac file replica and metadata catalog. Journal of Physics: Conference Series, vol. 396(3) p. 032108, 2012.

[5] F. Gaede, T. Behnke, N. Graf, and T. Johnson, LCIO: A Persistency framework for linear collider simulation studies. In Conference for Computing in High-Energy and Nuclear Physics. 2003.

[6] P. Schade and A. Lucaci-Timoce. Description of the signal and background event mixing as implemented in the Marlin processor OverlayTiming. CERN LCD-Note-2011-006, 2011

Mail: christian.grefe@cern.ch, spconsulting@gmail.com, andre.sailer@cern.ch, atsareg@in2p3.fr

WWW: http://ilcdirac.cern.ch