
Lorenzo Moneta
root.cern.ch

New ROOT TFormula class

1

Lorenzo Moneta (PH-SFT),
Maciej Zimnoch (University of Wroclaw, GSoC)

presented by
Fons Rademakers (PH-SFT)

October 15, 2013

http://root.cern.ch
http://root.cern.ch

New TFormula class in ROOT - L. Moneta CHEP 2013: October 14-18 2013

Outline

• TFormula class in ROOT
–Introduction
–Current functionality and limitations

• New TFormula class
–Developed by Maciej Zimnoch (Google Summer of Code

student 2013)
–Using Cling to evaluate expressions

• Current Status
–Performance tests

• Future improvements
–Auto-Differentiation

• Conclusions
2

New TFormula class in ROOT - L. Moneta CHEP 2013: October 14-18 2013

Introduction

• TFormula class in ROOT
–Class for evaluating mathematical functions provided as

expression strings
–ROOT function class (TF1) derives from TFormula

• Uses TFormula constructs for making functions from string

– TF1 is used for fitting and for plotting functions in ROOT

• Examples of TFormula constructs:
–Simple functions

–Composition of functions

3

TFormula(“f1”, “sin(x)”);

TFormula(“f2”, “x^2+2”);

TFormula(“f3”, “f1 + f2”);

New TFormula class in ROOT - L. Moneta CHEP 2013: October 14-18 2013

Formula Constructs

–Function with parameters:

–Using predefined functions:

• gaus is equivalent to: [0]*TMath::Gaus(x,[1],[2])

• pol2 is equivalent to: [0] + [1]* x + [2]*x^2

–Using any library function:

4

TFormula(“f”, “[0] * sin(x * [1])”);

TFormula(“f”, “gaus”);

TFormula(“f”, ”ROOT::Math::chisquared_pdf(x,[0])”);

TFormula(“f”, “pol2”);

New TFormula class in ROOT - L. Moneta CHEP 2013: October 14-18 2013

Current Limitations

• TFormula contains customized code to parse the
expression string and evaluate it
–Custom parser (does not use CINT C/C++ parser)

• CINT too slow to evaluate functions
–Has been optimized for speed

• Used for fitting
• Used in TTreeFormula to query TTree’s

–Parsing expressions is complex
• Several 1000’s lines of code

–Very difficult to extend and maintain
• E.g. adding new C++11 syntax

5

New TFormula class in ROOT - L. Moneta CHEP 2013: October 14-18 2013

Current Limitations (2)

• Dictionary (CINT and now Cling) is used for functions
from the library
–E.g. functions from TMath or ROOT::Math
–Slow to execute since it function call is wrapped in

interpreted code
–TFormula defines some pre-defined functions:

•gaus, polN, expo, landau
• Used in the formula as compiled code
• E.g. “gaus” is much faster than
“[0] * TMath::Gaus(x,[1],[2])”

–Pre-defined functions add extra-complexity in the code
• Difficult to add new ones

6

New TFormula class in ROOT - L. Moneta CHEP 2013: October 14-18 2013

Current Limitations (3)

• Do we really need this customized parsing code in
TFormula?

7

New TFormula class in ROOT - L. Moneta CHEP 2013: October 14-18 2013

New TFormula

• Uses Cling available in ROOT 6
• Replace old parser with the JIT provided by Cling

– A real C++ interpreter
– More confident in correctness of results when using a real

compiler
– Better detection of syntax errors
– Reduce substantially the code size

• Maintain the old functionality for backward compatibility
• Extensible

– Easy to add new functions
– Use different variables names than x,y,z

• Scale to large and complex expressions

8

New TFormula class in ROOT - L. Moneta CHEP 2013: October 14-18 2013

How Does it Work

• TFormula creates a C/C++ functions which is
passed to Cling

• The created function is now compiled on the fly using
the JIT of Cling

9

TFormula(“f”, “[0] * sin(x * [1])”);

Double_t TF__f(Double_t *x,Double_t *p)
{
 return p[0]*TMath::Sin(x[0]*p[1]) ;
}

New TFormula class in ROOT - L. Moneta CHEP 2013: October 14-18 2013

Evaluation of TFormula

• Faster evaluation: it is compiled code!
–No need to have a dedicated parser to analyze and

compile the code as in old TFormula
• JIT compilation is done at initialization time, not when

evaluating the expression
• The created function is evaluated using its function

pointer, which can be retrieved via the ROOT
interpreter interface
–Very small overhead compared to calling the function via

MethodCall interface
• Pre-defined functions (gaus) and library functions

(TMath::Gaus) are treated in the same way

10

New TFormula class in ROOT - L. Moneta CHEP 2013: October 14-18 2013

TFormula Parsing (Initizalization)

• TFormula parsing is now limited to clean up the
input expression:
– interpreting parameter names

• [0] → par[0]

–interpreting variables
• x,y,z → x[0], x[1], x[2]

–translating pre-defined expressions
• gaus(0) → par[0]*TMath::Gaus(x[0],par[1],par[2])

• Check validity of expression
• Create the C/C++ function for Cling
• Code is reduced substantially

11

New TFormula class in ROOT - L. Moneta CHEP 2013: October 14-18 2013

Advantages of New TFormula

• More flexible code
–Easy to add new pre-defined functions as shortcuts for

user convenience
• Just one line of code to change to include the translation symbol

corresponding to the pre-defined function
– I.e. what “myfunc” is translated to in C++

–One can add meaningful parameters directly in the
expression

• TFormula f(“f”, “A * sin(x * B)”);
• f.SetParameter(“A”,1); f.SetParameter(“B”,2);

–Function dimension is not limited to 4
• One can define functions with several variables
• Use f.AddVariable(..)

12

New TFormula class in ROOT - L. Moneta CHEP 2013: October 14-18 2013

Performance Tests

• Tests of new TFormula:
–Formula with 4 variables and 1000 parameters:

• Initialization:
– Time = 0.1 seconds

• 1 million evaluations:
– Time = 2.1 seconds

• Using Old TFormula:
–Using the same expression (1000 parameters)

• Initialization
– Time = 1.2 seconds

• Evaluation:
– Fails to evaluate such large expressions
– Does not scale for such large formula

13

New TFormula class in ROOT - L. Moneta CHEP 2013: October 14-18 2013

Performance Test (2)

• Test of evaluation of new vs old TFormula
– Time for 1 evaluation (in ns)

14

Expression type
New TFormula

v5.99
Old TFormula

v5.34

predefined functions
gaus(0) + gaus(3) 60 ns 65 ns

interpreting expression
“TMath::Gaus(....)” 65 ns 400 ns

formula functions
“exp(-0.5*(x-[1])/[2])^2)...” 60 ns 200 ns

compiled functions
double f(double*x,double*p) { return
TMath::Gaus(...).. }

50 ns 50 ns

New TFormula class in ROOT - L. Moneta CHEP 2013: October 14-18 2013

Current Status

• New TFormula class is available on github
–https://github.com/lmoneta/root/tree/tformula

• It has already been integrated in TF1 and it can be
used for fitting and plotting functions
–Several remaining issues are being fixed

• Will soon be integrated in the ROOT master
–Still working on improving:

• Adding more pre-defined functions
• Better interface to add new variables and new parameter names in

expression

15

https://github.com/lmoneta/root/tree/tformula
https://github.com/lmoneta/root/tree/tformula

New TFormula class in ROOT - L. Moneta CHEP 2013: October 14-18 2013

Further Improvements

• Computing Derivatives inside TFormula using Auto-
Differentiation (AD)

–AD allows to compute precisely and efficiently the
function derivatives
•Reduces numerical error and reduces computation
cost compared to numerical derivatives

–Extremely useful for fitting/minimization

16

New TFormula class in ROOT - L. Moneta CHEP 2013: October 14-18 2013

Automatic Differentiation

• Auto-Differentiation requires to transform the
semantic of a program (function)
–Works by combining values of

basic operations using the
derivative chain rule

17

Forward propagation

New TFormula class in ROOT - L. Moneta CHEP 2013: October 14-18 2013

AD Prototype in Cling

• Prototype implementation of AD as a plug-in for Cling
– Developed by Violeta Ilieva (Google Summer of Code 2013 student

from Princeton University) and Vassil Vassilev (CERN PH-SFT)
–Uses forward propagation and source code

transformation
–Uses Cling to parse code and create derivative functions

18

New TFormula class in ROOT - L. Moneta CHEP 2013: October 14-18 2013

Conclusions

• The new TFormula leverages the Cling functionality
–Will be integrated in ROOT 6
–Provides a more robust and faster evaluation of functions
–Scales to very large expressions
–Can be used for building the parametric functions for fitting
– Integration with TTreeFormula and RooFit in the pipeline

• Integrate Auto-Differentiation developments
–Very interesting and useful technique which can be

integrated in ROOT and RooFit to compute derivatives of
functions

– Will speed-up minimization (fitting) of very complex functions
• E.g. models used at LHC (Higgs combination model)

• Thanks to Google for allocating us GSoC students!

19

