-
- ¥
y

.

- '- . . -~
f‘\fﬁ."{"w!::i $ %8
W \, -

CAAATR 7Y

A AT
et g

Lorenzo Moneta (PH-SFT),
Maciej Zimnoch (University of Wroclaw, GSoC)

presented by
Fons Rademakers (PH-SFT)

October 15, 2013

Lorenzo Moneta
root.cern.ch

http://root.cern.ch
http://root.cern.ch

~

Outline

« TFormula class in ROOT

—Introduction
—Current functionality and limitations

 New TFormula class
—Developed by Maciej Zimnoch (Google Summer of Code

student 2013)
—Using Cling to evaluate expressions

« Current Status
—Performance tests

* Future improvements
—Auto-Differentiation

* Conclusions

New TFormula class in ROOT - L. Moneta CHEP 2013: October 14-18 2013

~

Introduction

e« TFormula class in ROOT

—Class for evaluating mathematical functions provided as
expression strings

—ROOQOT function class (TF1) derives from TFormula
« Uses TFormula constructs for making functions from string

— TF1 is used for fitting and for plotting functions in ROOT

- Examples of TFormula constructs:
—Simple functions

TFormula (“£f1”, “sin(x)”);

TFormula (\\fz 144 , \\xA2+2 144) ;

—Composition of functions

TFormula (“£3”7, “f1 + £2”7) ;

New TFormula class in ROOT - L. Moneta CHEP 2013: October 14-18 2013

~

\/ Formula Constructs
i

—Function with parameters:

TFormula (“£”, “[0] * sin(x * [1])")

—Using predefined functions:

TFormula (“£”, “gaus”);

e gaus IS equivalent to: [0]*TMath: :Gaus (x, [1],[2])

TFormula (“£”, “pol2”);

e pol2is equivalentto: [0] + [11* x + [2]*x"2

—Using any library function:

TFormula (“£”, "ROOT::Math::chisquared pdf (x,[0])”);

New TFormula class in ROOT - L. Moneta CHEP 2013: October 14-18 2013

~

Current Limitations

« TFormula contains customized code to parse the
expression string and evaluate it

—Custom parser (does not use CINT C/C++ parser)
* CINT too slow to evaluate functions

—Has been optimized for speed
 Used for fitting

* Used in TTreeFormula to query TTree’s

—Parsing expressions is complex
» Several 1000’s lines of code

—Very difficult to extend and maintain
* E.g. adding new C++11 syntax

New TFormula class in ROOT - L. Moneta CHEP 2013: October 14-18 2013

3/ Current Limitations (2)
s

~

* Dictionary (CINT and now Cling) is used for functions
from the library

—E.qg. functions from TMath or ROOT::Math

—Slow to execute since it function call is wrapped in
interpreted code

—TFormula defines some pre-defined functions:

egaus, polN, expo, landau
» Used in the formula as compiled code

« E.9. “"gaus” Is much faster than
“[0] * TMath::Gaus(x,[1],[2])”

—Pre-defined functions add extra-complexity in the code
» Difficult to add new ones

New TFormula class in ROOT - L. Moneta CHEP 2013: October 14-18 2013

\/ Current Limitations (3)

* Do we really need thls Customlzed parsmg code In
TFormula?

/™

/- ———
Vi

VS o Expressions in one formula are recursively analyzed.
/7* Result of analysis is stored in the object tables.
¥ /g

5 o Table of function codes and errors
/-

r/*

/e * functions :
//®-

/7 pow 20

VAL - 5q 21

/7%~ : sqrt 22

/™ strstr 23

VAL min 24

F 7 o max 25

Vi log 30

//* s exp 31

/7 { 10g1@ 32

/™ ¢

VAl abs 41

/7 sign 42

/’* ! int 43

//®-

F e fmod rndn 50

VAl

/7 cosh acosh 73

e sinh i asinh 74

A tanh atanh 75

V { b

/" expo gaus 110 gausn (see note below)
/7 expo(@) gaus(@) 110 @ gousn(®)

/7 expo(l) gaus(l) 110 gausn(l)

" xexpo Xgaus 110 xgousn

/7%~ YexXpo 101 ygous 111 ygousn

/7 Zexpo 102 zgaus 112 zgousn

/r7* Xyexpo 105 XygQous 115 Xygausn

/7% yexpo(S) 102 ygaus(s) 111 ygousn(s)

pre xyexpo(2) 105 xygous(2) 115 xygausn(2)

New TFormula class in ROOT - L. Moneta CHEP 2013: October 14-18 2013

~

New TFormula

» Uses Cling available in ROOT 6

» Replace old parser with the JIT provided by Cling
—Areal C++ interpreter

—More confident in correctness of results when using a real
compiler

— Better detection of syntax errors

— Reduce substantially the code size
» Maintain the old functionality for backward compatibility

- Extensible
—Easy to add new functions
—Use different variables names than x,y,z

» Scale to large and complex expressions

New TFormula class in ROOT - L. Moneta CHEP 2013: October 14-18 2013

~

How Does it Work

« TFormula creates a C/C++ functions which is
passed to Cling

TFormula (“£f”, “[0] * sin(x * [1])”)

Double t TF f(Double t *x,Double t *p)
{

}

return p[0] *TMath: :Sin(x[0] *p[1])

* The created function is now compiled on the fly using
the JIT of Cling

New TFormula class in ROOT - L. Moneta CHEP 2013: October 14-18 2013

~

Evaluation of TFormula

» Faster evaluation: it is compiled code!

—No need to have a dedicated parser to analyze and
compile the code as in old TFormula

- JIT compilation is done at initialization time, not when
evaluating the expression

* The created function is evaluated using its function
pointer, which can be retrieved via the ROOT
interpreter interface

—Very small overhead compared to calling the function via
MethodCall interface

 Pre-defined functions (gaus) and library functions
(TMath: : Gaus) are treated in the same way

New TFormula class in ROOT - L. Moneta CHEP 2013: October 14-18 2013

TFormula Parsing (Initizalization)
« TFormula parsing is now limited to clean up the
input expression:

—interpreting parameter names
* [0] — par[0]

—interpreting variables
*x,y,z— x[0], x[1], x[2]

—translating pre-defined expressions
egaus (0) — par[0] *TMath: :Gaus (x[0] ,par[l] ,par[2])

» Check validity of expression
 Create the C/C++ function for Cling
» Code is reduced substantially

New TFormula class in ROOT - L. Moneta CHEP 2013: October 14-18 2013

~

Advantages of New TFormula

 More flexible code

—Easy to add new pre-defined functions as shortcuts for
user convenience

* Just one line of code to change to include the translation symbol
corresponding to the pre-defined function

—l.e. what ‘'myfunc’ is translated to in C++

—One can add meaningful parameters directly in the
expression
e TFormula f£(“f”, “A * sin(x * B)”);
e f.SetParameter (Y*A”,1),; f.SetParameter(“B”,2);
—Function dimension is not limited to 4
* One can define functions with several variables
« Use £f.Addvariable(..)

New TFormula class in ROOT - L. Moneta CHEP 2013: October 14-18 2013

Performance Tests

~

e Tests of new TFormula:

—Formula with 4 variables and 1000 parameters:
* |nitialization:
— Time = 0.1 seconds

* 1 million evaluations:
—Time = 2.1 seconds

« Using Old TFormula:

—Using the same expression (1000 parameters)
* |nitialization
— Time = 1.2 seconds

 Evaluation:
— Fails to evaluate such large expressions
— Does not scale for such large formula

New TFormula class in ROOT - L. Moneta CHEP 2013: October 14-18 2013

Performance Test (2)

~

- Test of evaluation of new vs old TFormula
— Time for 1 evaluation (in ns)

New TFormula Old TFormula

Expression type V5.99 V5,34

predefined functions
gaus (0) + gaus (3) 60 ns 65 ns

iInterpreting expression
“TMath::Gaus (. . ..)" 65 ns 400 ns

formula functions 60 ns 200 ns

“exp(-0.5*%(x-[1]1)/[2]1)*2)...”

compiled functions
double f (double*x,double*p) { return 50 nsS 50 nsS

TMath::Gaus(...).. }

New TFormula class in ROOT - L. Moneta CHEP 2013: October 14-18 2013

~

Current Status

 New TFormula class is available on github
—https://github.com/Imoneta/root/tree/tformula

- It has already been integrated in TF1 and it can be
used for fitting and plotting functions
—Several remaining issues are being fixed

* Will soon be integrated in the ROOT master

—Still working on improving:
» Adding more pre-defined functions

* Better interface to add new variables and new parameter names in
expression

New TFormula class in ROOT - L. Moneta CHEP 2013: October 14-18 2013

https://github.com/lmoneta/root/tree/tformula
https://github.com/lmoneta/root/tree/tformula

~

Further Improvements

« Computing Derivatives inside TFormula using Auto-
Differentiation (AD)

Automatic
differentiation

1G9 oaols

human

programmer

y = f(x)

symbolic differentiation

(human/computer)

—AD allows to compute precisely and efficiently the
function derivatives

* Reduces numerical error and reduces computation
cost compared to numerical derivatives

—Extremely useful for fitting/minimization

New TFormula class in ROOT - L. Moneta CHEP 2013: October 14-18 2013

~

Automatic Differentiation

» Auto-Differentiation requires to transform the
semantic of a program (function)

—Works by combining values of f@)=gB)
basic operations using the J'(x) = g'(h(x))- h'(x)

derivative chain rule df dg oh
ax oh ox

f(x1,x9) = x129 + sin(xy)

Forward propagation
of derivative values

Forward propagation

1. ¢ seeds, wy. Wy € {0,1}

New TFormula class in ROOT - L. Moneta CHEP 2013: October 14-18 2013

~

AD Prototype in Cling

* Prototype implementation of AD as a plug-in for Cling

— Developed by Violeta llieva (Google Summer of Code 2013 student
from Princeton University) and Vassil Vassilev (CERN PH-SFT)

—Uses forward propagation and source code
transformation

—Uses Cling to parse code and create derivative functions

function.c diff_function.c diff _function.o

float example-fn(lnt x' int y' int z) { flan exaqple_fn_derived_X(lnt X, 1nt y, int Z) {
return X + y * 2;) Sodad

}

float example_fn_derived_y(int x, int y, int 2) {

diff(example_fn, x); // y o
diff(example_fn, y); //
diff(exemple_fn, 2); // float example_fn_derived_z(int x, int y, int 2) {

return y;

}

New TFormula class in ROOT - L. Moneta CHEP 2013: October 14-18 2013

~

Conclusions

 The new TFormula leverages the Cling functionality

—Will be integrated in ROOT 6

—Provides a more robust and faster evaluation of functions
—Scales to very large expressions

—Can be used for building the parametric functions for fitting

—Integration with TTreeFormula and RooFit in the pipeline

* Integrate Auto-Differentiation developments

—Very interesting and useful technique which can be
integrated in ROOT and RooFit to compute derivatives of
functions

— Will speed-up minimization (fitting) of very complex functions
* E.g. models used at LHC (Higgs combination model)
* Thanks to Google for allocating us GSoC students!

New TFormula class in ROOT - L. Moneta CHEP 2013: October 14-18 2013

