
1. Introduction

Data management and provisioning in the ATLAS experiment [1] is done by Don
Quijote 2 (DQ2) [2] since 2006.
▪ 150 peta bytes
▪ 120 sites around the globe
▪ 800 active users

Although DQ2 is able to manage todays
workload, it is almost at its limits:
▪ the amount of data has increased
▪ applications depending on distributed

data provision (e.g. the ATLAS
Production and Distributed Analysis
System (PanDA) [3]) became more
powerful

▪ various adaptions and changed
requirements over the last years did
compromise its basic design

To avoid DDM becoming the bottleneck for future applications, Rucio [4] was
implemented. Its design …
▪ … respects the experience gained over the last 7 years with DQ2 (e.g. user

behaviour, application requirements, …)
▪ … has a strong focus on scalability

To verify its scalability, a workload emulator was developed to validate its
performance at multiples of todays load.

2. Profiling DQ2 Workload and Requirements

In order to gain reliable data about Rucio’s scalability, we first needed to
understand todays workload. We therefore analysed DQ2 log data since the
beginning of 2013, namely:

▪ Central File Catalogue Logs: providing information about all API calls
against DQ2 (~ 75GB/day)

▪ Traces: providing information about all file transfers performed on behalf of
DQ2 (~ 25GB/day)

The output was aggregated per hour and grouped by the following attributes:

▪ account: indicating the account executing the API call

▪ application ID: an unique identifier for

each application interacting with DQ2

▪ method: the called API method of DQ2

In Figure 2 we provide an overview about the
top 4 applications in number of API calls.
Others aggregate about 15 - 20 more
applications, but are not mentioned explicitly.

Undefined is related to the use of outdated DQ2 client distributions, where no
indication about its source or purpose is provided in the log entries.

Next we identified various use cases executed by each of these four applications.
Therefore data, internal to DQ2 as well as data provided externally by the
relevant applications, have been taken into account.

After the use cases have been identified, we defined "API footprints" for each of
them to match against DQ2 log data, resulting in an approximation about the
ratio of identified workload observed in DQ2.

3. Emulation Framework

We designed the emulation
framework to put a continuous,
real-world workload onto our
Rucio test instance to identify
performance bottlenecks and to
have instant information about
the performance implications of
each patch set or new feature.
For this purpose we identified
the following requirements for
the emulation framework:
▪ High scalability (up to

multiple kHz)
▪ Easy extendable with new

use cases (Plug-In like)
▪ Real-time and comprehensive
monitoring of the workload and
performance indicators (e.g.
use case frequencies, method
response times, …)

Figure 3 provides an overview about the architecture we identified to be feasible
for the requirements identified above.

3.1. The Emulator
The Emulator is in charge of dispatching job descriptions (i.e. use cases) in real-
time into a distributed queue (Gearman Server). It further provides …
▪ … a shared context object per module.
▪ … an input and output method per use case to access the context object

(enabling correlated use cases).
▪ … a setup and shutdown method per module (e.g. loading / persisting the

context object to avoid ramp-ups).
▪ … automatic distribution of modules over multiple processes and threads for

high resource efficiency.

3.2. Gearman Framework
The Gearman framework [5] consists of Servers and Workers.
▪ Gearman Server: provides a distributed First-In-First-Out Queue for job

descriptions.
▪ Gearman Workers: pick up jobs (i.e. use cases) from the server queue and

report back the outcome of the execution.
As new workers can be started at any time on any host, it provides excellent
horizontal scalability.

3.3. Monitoring
We decided to use Graphite [6] for data monitoring as it provides excellent
capabilities for real-time data taking combined with a powerful user interface to
compose various plots to illustrate the recorded data. To support data taking at
frequencies higher than 1Hz, Node.js [7] is put in front, acting as an aggregator.

References
[1] CERN 2002 The ATLAS Experiment URL http://atlas.ch/

[2] Branco M, Zaluska E, de Roure D, Lassnig M and Garonne V 2010 Concurrency and Computation: Practice and Experience 22 1338–1364 URL http://dx.doi.org/
10.1002/cpe.1489

[3] Maeno T, De K, Wenaus T, Nilsson P, Stewart G a, Walker R, Stradling a, Caballero J, Potekhin M and Smith D 2011 Journal of Physics: Conference Series 331 072024
ISSN 1742-6596 URL http://stacks.iop.org/1742-6596/331/i=7/a=072024?key=crossref.349ff5d6b96b79f6d1ebe3fa760f9437

[4] CERN 2013 RUCIO URL http://rucio.cern.ch

[5] Ewart J 2013 Instant Parallel Processing with Gearman (Packt Publishing Ltd) ISBN 978-1783284078

[7] Graphite - Scalable Realtime Graphing URL http://graphite.wikidot.com/

[8] Teixeira P 2012 Professional Node. js: Building Javascript Based Scalable Software (Indianapolis, Indiana, USA: John Wiley & Sons, Inc.) ISBN 978-1118185469

DDM Workload Emulator
R Vigne, E Schikuta, V Garonne, G Stewart, M Barisits, T Beermann, M Lassnig, C Serfon, L Goossens and A Nairz on behalf of the ATLAS Collaboration

http://rucio.cern.ch

Figure 2: Workload distribution by
distinct applications.

Tabel 1: Overview of API calls mapped to use cases

Figure 3: Overview of the emulation
framework architecture

4. Conclusion

These three components (Emulator, Gearman Framwork, and Graphite+Node.js)
together provide a highly scalable and powerful framework to keep a constant,
and realistic workload onto Rucio. The detailed information about the run-time
behaviour of the system is of great value while optimising Rucio for production.

Figure 4: Scaling test with loads 1, 2, and 4

Figure 1: Data managed by DQ2

