

Ò  Live payload debugging. The user can request live payload debugging when
launching the grid jobs using pathena or prun [9]. When the pilot downloads a
corresponding job, it will receive a special instruction in the job definition to
frequently upload debugging information about the payload. This information will
be made available on the PanDA Monitor job page for viewing by the user.
Ò  Data access via the Federated XRootD system. The pilot has the option to
attempt stage-in from a remote SE using the Federated ATLAS XRootD (FAX)
[10] system. The FAX system consists of several dozens of sites accessed by
hundreds of clients that act like a single storage resource. A special FAX Site
Mover was developed for the PanDA Pilot, which means that the pilot can also use
it as a primary copy tool, and not only as a fail-over mechanism which makes it
interesting for “diskless” sites.
Ò  Stage-out to alternative storage elements. The pilot is equipped with a
mechanism for stage-out to an alternative Storage SE. The idea is that if the pilot
fails (partially or completely) to stage-out the output files at the primary SE, it can
re-attempt the stage-out on an alternative SE in the same cloud.
Ò  Rucio. The pilot now has support for the new ATLAS DDM system (Rucio
[11]), i.e. file paths used during stage-in/out can follow Rucio convention.
Ò  glExec. The pilot has been refactored to enable proper introduction of glExec
[12], while keeping the highly useful multi-job functionality (the ability to run
several jobs from different users sequentially).

The PanDA system is serving over 100k
production jobs and 35k user analysis jobs
concurrently. It is performing very well with
high job efficiency. The error rate in the
entire system is very low. For production
jobs the majority of the errors are site or
system related, while for user analysis jobs
the most common issues are related to
application software. Pilot mechanisms like
job recovery and FAX failover contribute to
the robustness against site related failures.

[1] The ATLAS Experiment: ATLAS Technical Proposal. ATLAS Collaboration. CERN/LHCC/94-43, 1994
[2] P. Nilsson et al, Proc. of the 19th Int. Conf. on Computing in High Energy and Nuclear Physics

 (CHEP2012)
[3] T. Maeno et al, Proc. of the 18th Int. Conf. on Computing in High Energy and Nuclear Physics (CHEP

 2010)
[4] Open Science Grid: http://www.opensciencegrid.org
[5] European Grid Initiative: http://www.egi.eu
[6] M. Ellert et al., NIM A, 2003, Vol. 502
[7] CMS Collaboration, JINST 3 (2008) S08004, doi:10.1088/1748-0221/3/08/S08004
[8] R. Battiston, Nucl. Instrum. Methods Phys. Res., Sect. A 588, 227 (2008)
[9] Distributed analysis on PanDA: https://twiki.cern.ch/twiki/bin/viewauth/AtlasComputing/DAonPanda
[10] R. Gardner et al., Proc. of the 19th Int. Conf. on Computing in High Energy and Nuclear Physics (CHEP

 2012)
[11] Rucio: http://rucio.cern.ch
[12] D. Groep, O. Koeroo, G. Venekamp, J.Phys.:Conf.Series 119 (2008) 062032

Next Generation PanDA Pilot for ATLAS and Other Experiments
P Nilsson1, F Barreiro Megino2, J Caballero Bejar3, K De1, J Hover3, P Love4, T Maeno3, R

Medrano Llamas2, R Walker5, T Wenaus3 for the ATLAS Collaboration
1University of Texas at Arlington (US), 2CERN, 3Brookhaven National Laboratory (US), 4Lancaster University (UK), 5Ludwig-Maximilians-Univ. Muenchen (DE)

The Production and Distributed Analysis system (PanDA) has been in use in the ATLAS Experiment since 2005. It uses a sophisticated pilot system to execute submitted
jobs on the worker nodes. While originally designed for ATLAS, the PanDA Pilot has recently been refactored to facilitate use outside of ATLAS. Experiments are now
handled as plug-ins such that a new PanDA Pilot user only has to implement a set of prototyped methods in the plug-in classes, and provide a script that configures and
runs the experiment specific payload. We will give an overview of the Next Generation PanDA Pilot system and will present major features and recent improvements
including live user payload debugging, data access via the Federated XRootD system, stage-out to alternative storage elements, support for the new ATLAS DDM system
(Rucio), and an improved integration with glExec, as well as a description of the experiment specific plug-in classes. The performance of the pilot system in processing
LHC data on the OSG, LCG and Nordugrid infrastructures used by ATLAS will also be presented. We will describe plans for future development on the time scale of the
next few years.

Recent New Features

Abstract

Introduction

References

A common approach in grid computing is to use pilot jobs. In the case of ATLAS
[1], pilot factories are used to send special lightweight jobs, called pilot wrappers,
to the batch systems that execute them on the worker nodes. The pilot wrappers
download the PanDA Pilot [2] and launch it using pilot options that are relevant to
the site in question. The responsibility of the pilot is to download the actual
payload from the PanDA Server and any input file from the local Storage Element
(SE), execute the payload, upload the output to the SE, and send the final job
status to the server.
PanDA [3] has been very successful in managing the distributed analysis and
production requirements across all ATLAS grids; OSG [4], EGI [5] and Nordugrid
[6]. Today PanDA is being considered for use beyond ATLAS by several other
experiments. To meet this need, it has been necessary to refactor the PanDA Pilot
which until recently has been ATLAS specific.

Subprocesses

Plug-in Mechanism
An adopting PanDA Pilot user should in principle only have to implement certain
methods in the plug-in Experiment and SiteInformation classes. The plug-in
classes contain methods that are experiment specific but sorted into two different
classes. The Experiment classes contain methods related to payload setup, how the
subprocess (responsible for the payload) should be launched, how metadata should
be handled, which files should be removed from the payload work directory before
the job log file is created, etc. The SiteInformation classes contain methods for
handling site information from a DB, how it should be downloaded, from where,
and how to verify its integrity, as well as how to manipulate it.

Performance

PanDA Pilot
Workflow

Subprocess

A pilot module (called Monitor) forks and monitors a subprocess that is
responsible for the payload. This subprocess can in principle be any module that
needs the full attention and supervision of the Monitor. The primary PanDA Pilot
subprocess module is called runJob, and is responsible for payload setup, stage-in
of input files, execution of the payload and stage-out of output files. Two
additional subprocess modules are currently in development; runEvent will be
used to read and process events from an Event Server, and runHPCJob will be
used for handling HPC jobs.

Plans for Future Developments
The PanDA Pilot has been refactored to facilitate the development of experiment
specific classes. The Common Analysis Framework collaboration between ATLAS
and CMS [7], has resulted in the development of experiment classes for CMS.
Furthermore, AMS [8] is planning to adopt the PanDA system. Improving and
further developing the PanDA Pilot for serving multiple experiments is of highest
priority. To this end, several projects are foreseen including a new version of the
job recovery mechanism [2], providing a full PanDA Pilot documentation,
improving error reporting in a multi-experiment environment, and having pilot
support for Event Server jobs and HPC’s.

