
ATLAS Offline Software

Performance Monitoring and Optimization

Neelima Chauhan, Gunjan Kabra, Thomas Kittelmann, Robert
Langenberg, Rocco Mandrysch, Andreas Salzburger, Rolf Seuster,

Elmar Ritsch, Graeme Stewart, Niels van Eldik, Roberto Vitillo

CHEP 2013
14.10 - 18.10.2013



Contents

1 Introduction

2 Performance measurements

3 Performance comparison studies

4 Summary and Conclusion

Rocco Mandrysch (University of Iowa) Performance Monitoring and Optimization 17.10.2013 1 / 19



Introduction

Why do we need software performance improvements?

LHC will run again in 2015 with:

ATLAS trigger rate: ∼ 1 kHz (2012: . 400 Hz)

14 TeV and 25 ns bunch spacing

average 25 to 40 interactions per bunch crossing

For reconstruction software:

processing time per event needs to be improved substantially

memory consumption needs to be decreased

Several projects for speed improvement are in progress

Performance studies of two of these projects will be discussed here

Rocco Mandrysch (University of Iowa) Performance Monitoring and Optimization 17.10.2013 2 / 19



Introduction

Performance measurements

Profiling shows highest CPU/event consumers are algorithms for track

reconstruction

Several mathematical operations are executed in these algorithms:

vector/matrix operations via CLHEP framework

trigonometric functions via standard GNU libm mathematical library

The operations were monitored by:

Intel’s Pin tool

PAPI

CPU performance comparisons studies between different

mathematical libraries were made in a simple test framework

Rocco Mandrysch (University of Iowa) Performance Monitoring and Optimization 17.10.2013 3 / 19



Performance measurements Math libraries

Linear algebra libraries

CLHEP Eigen SMatrix
Intel Math

Kernel Library

• C++ utility classes • C++ templates • Implemented in ROOT • BLAS and LAPACK

for HEP (headers only) as expression templates interface

• supports SIMD • highly optimized

vectorization

• expression templates allow removal of temporaries and lazy evaluation

All libraries support matrices and vectors with all sizes

CLHEP is not maintained anymore and not perform well

Rocco Mandrysch (University of Iowa) Performance Monitoring and Optimization 17.10.2013 4 / 19



Performance measurements Monitoring tools

Pin tool

Dynamic binary instrumentation framework

includes API for abstracting underlying instruction set idiosyncrasies

→ no recompilation needed

can inject code at the level of functions or instructions

It is the underlying tool used by Intel Parallel Inspector and Amplifier

http://www.pintool.org/

Rocco Mandrysch (University of Iowa) Performance Monitoring and Optimization 17.10.2013 5 / 19



Performance measurements Monitoring tools

Results from monitoring CLHEP functions with Pin

Monitor calls of CLHEP functions:

during reconstruction job

with 2012 data sample

(events passed any Jet, Tau or Missing ET trigger chain)

Five CLHEP functions with highest number of calls:

Function Calls/Evt

HepVector::∼HepVector() 3691535

HepSymMatrix::HepSymMatrix(HepSymMatrix const &) 1702193

HepVector::HepVector(int, int) 1593544

operator*(HepMatrix const&, HepSymMatrix const&) 93120

operator*(HepMatrix const&, HepVector const&) 42918

Rocco Mandrysch (University of Iowa) Performance Monitoring and Optimization 17.10.2013 6 / 19



Performance measurements Monitoring tools

Results from monitoring CLHEP functions with Pin

’HepMatrix*HepSymMatrix’ arguments with highest number of calls:

1st Argument 2nd Argument Calls/Evt

3× 3 3× 3 29333

3× 2 2× 2 28139

3× 5 5× 5 13003

’HepSymMatrix*HepVector’ arguments with highest number of calls:

1st Argument 2nd Argument Calls/Evt

5× 3 3 23676

3× 5 3 11802

1× 5 5 4718

Rocco Mandrysch (University of Iowa) Performance Monitoring and Optimization 17.10.2013 7 / 19



Performance measurements Monitoring tools

Thanks to pintool,

now we know how we use CLHEP inside our code,

with this knowledge we can setup and analyse a realistic test bed

The results from this testbed are presented in the following slides

Rocco Mandrysch (University of Iowa) Performance Monitoring and Optimization 17.10.2013 8 / 19



Performance measurements Monitoring tools

PAPI (Performance API)

Platform-independent interface for hardware performance counters

such as: floating point operations, level 1 cache misses, single/double

precision vector/SIMD instructions

Contains low- and high-level sets of routines for accessing counters:

low level: controls and provides access to all counters

high level: easily allows one to start, stop and read the counters

http://icl.cs.utk.edu/papi/

Rocco Mandrysch (University of Iowa) Performance Monitoring and Optimization 17.10.2013 9 / 19

http://icl.cs.utk.edu/papi/


Performance measurements Monitoring tools

Results from monitoring matrix/vector operations with
PAPI

Monitor floating point operations of several matrix/vector calls

with PAPI in a simple test framework

Compare CLHEP with other classes: Eigen and SMatrix

Floating point operations of 3-dimensional vector/matrix calls:

Operations CLHEP Eigen SMatrix

Matrix allocation 9 9 9

Vector allocation 3 3 3

Vector + Vector 3 3 3

Matrix × Vector 18 15 n./a.

Matrix × Matrix 54 47 46

Matrix × Vector is not direct available in SMatrix (ROOT v5.34.04)

Rocco Mandrysch (University of Iowa) Performance Monitoring and Optimization 17.10.2013 10 / 19



Performance comparison studies Matrix operations

Further studies: speed comparison measurements

Evaluated in a small test framework:

CPU time of different matrix multiplications

comparison studies between: CLHEP, Eigen, SMatrix, MKL

and two hand coded C++ routines: BasMult (non-vectorised) and

OptMult (vectorised)

Compiler setup : gcc 4.7.2 and ’-O3’ for vectorization

Implemented matrix multiplications:

4× 4 with square matrices (including only here BasMult and OptMult)

rectangular matrices: A5×3 × B3×5

template expression: C5×5 = αA5B3×5 + βC5×5

Rocco Mandrysch (University of Iowa) Performance Monitoring and Optimization 17.10.2013 11 / 19



Performance comparison studies Matrix operations

Speed comparison with 4× 4 square matrices

Speedup factor w.r.t. CLHEP:

Hand vectorized operation is the fastest

MKL is going though function calls → overhead

Rocco Mandrysch (University of Iowa) Performance Monitoring and Optimization 17.10.2013 12 / 19



Performance comparison studies Matrix operations

Speed comparison with rectangular matrices: A5×3 × B3×5

Speedup factor w.r.t. CLHEP:

Without vectorization

MKL is going though function calls → overhead

Rocco Mandrysch (University of Iowa) Performance Monitoring and Optimization 17.10.2013 13 / 19



Performance comparison studies Matrix operations

Speed comparison with expression templates:
C5×5 = αA5B3×5 + βC5×5

Speedup factor w.r.t. CLHEP:

Without vectorization

MKL performs better and overhead is diminished

Rocco Mandrysch (University of Iowa) Performance Monitoring and Optimization 17.10.2013 14 / 19



Performance comparison studies Matrix operations

Conclusion of speed comparison studies: matrix operations

Hand vectorized operation is the fastest,

but hand written code is less maintainable and error prone

Eigen is the fastest linear algebra library

ATLAS decided to replace CLHEP with Eigen for linear algebra

operation for track reconstruction

Rocco Mandrysch (University of Iowa) Performance Monitoring and Optimization 17.10.2013 15 / 19



Performance comparison studies Trigonometric functions

Trigonometric functions

GNU libm used as default for trigonometric functions

in ATLAS software

Monitored calls and instructions with Pin during reconstruction job

with 2012 data sample

Results with Pin and test framework:

Function M Call/Evt Time/Calls [ns] Time/Evt [s]

exp 3.4 146 0.496

cos 2.5 149 0.373

sin 2.2 149 0.328

atanf 2.1 22 0.0462

sincosf 2.1 24 0.050

Total times of all trigonometric functions per event: 2.037 s of 14.41 s
Rocco Mandrysch (University of Iowa) Performance Monitoring and Optimization 17.10.2013 16 / 19



Performance comparison studies Trigonometric functions

CPU time comparison study with alternative math libraries

VDT

developed by CMS

designed for auto-vectorization with fast calculations using Padé

approximations

can be inlined with different API calls, or built into a non-inlined

’drop-in’ library (used in this study)

further detailed information in Danilo Piparo’s talk

libimf

performance optimized library from Intel (Version 2013)

can be used as ’drop in’ replacement with LD PRELOAD

(use multiple code path for SSE and AVX instructions)

CPU time comparison study: running reconstruction job with 2012

data sample with GNU libm, VDT and libimf.

Rocco Mandrysch (University of Iowa) Performance Monitoring and Optimization 17.10.2013 17 / 19

http://indico.cern.ch/contributionDisplay.py?contribId=219&sessionId=7&confId=214784


Performance comparison studies Trigonometric functions

CPU time comparison study with alternative math libraries

Results of CPU time comparison study:

Math library Relative to GNU libm

GNU libm 1.000

VDT 0.923

libimf 0.919

Reconstruction jobs were running on Sandy Bridge processor with

AVX extensions

Conclusion:

libimf provides the fastest trigonometric functions

ATLAS decided to replace GNU libm with libimf,

but keep VDT available in ATLAS software
Rocco Mandrysch (University of Iowa) Performance Monitoring and Optimization 17.10.2013 18 / 19



Summary and Conclusion

Summary and Conclusion

Pin provides detailed information about how ATLAS software uses

CLHEP and trigonometric functions

PAPI is an analysis API for hardware performance counters

Use of these tools has already helped ATLAS achieve significant

speed ups in our offline software

Comparison studies showed:

Eigen is the fastest library for matrix and vector operations

libimf is the fastest library for trigonometric functions

ATLAS decided to replace:

CLHEP with Eigen for linear algebra operations for track reconstruction

GNU libm with libimf for trigonometric functions

More details about upgrades in tracking algorithms:

Talk by Robert Langenberg
Rocco Mandrysch (University of Iowa) Performance Monitoring and Optimization 17.10.2013 19 / 19

http://indico.cern.ch/contributionDisplay.py?contribId=286&sessionId=3&confId=214784


Backup slides



Summary and Conclusion

0
1
-0

9
0
1
-1

0
0
1
-1

1
0
1
-1

2
0
1
-1

3
0
1
-1

4
0
1
-1

5
0
1
-1

6
0
1
-1

7
0
1
-1

8
0
1
-1

9
0
1
-2

0
0
1
-2

1
0
1
-2

2
0
1
-2

3
0
1
-2

4
0
1
-2

5
0
1
-2

6
0
1
-2

7
0
1
-2

8
0
1
-2

9
0
1
-3

0
0
1
-3

1
0
2
-0

1
0
2
-0

2
0
2
-0

3
0
2
-0

4
0
2
-0

5
0
2
-0

6
0
2
-0

7
0
2
-0

8
0
2
-0

9
0
2
-1

0
0
2
-1

1
0
2
-1

2
0
2
-1

3
0
2
-1

4
0
2
-1

5
0
2
-1

6
0
2
-1

7
0
2
-1

80

1000

2000

3000

4000

5000

6000

m
ill

is
e
co

n
d
s 

p
e
r 

e
v
e
n
t

Domain breakdown in JetTauEtmiss reco of 500 events

Inner detector
25% of total
EGamma
DQ monitoring
Persistency
Calo
Jet+Btag
Combined muon
Muon
Etmiss
Outside alg execute
Tau
Trigger
Other

Setup:
ami f411, run 189822, lb 120

CPU time breakdown per domain depending on the day after the

release build during the night

Measure while processing a data sample from 2011

Rocco Mandrysch (University of Iowa) Performance Monitoring and Optimization 17.10.2013 21 / 19



Summary and Conclusion

0
1
-0

9
0
1
-1

0
0
1
-1

1
0
1
-1

2
0
1
-1

3
0
1
-1

4
0
1
-1

5
0
1
-1

6
0
1
-1

7
0
1
-1

8
0
1
-1

9
0
1
-2

0
0
1
-2

1
0
1
-2

2
0
1
-2

3
0
1
-2

4
0
1
-2

5
0
1
-2

6
0
1
-2

7
0
1
-2

8
0
1
-2

9
0
1
-3

0
0
1
-3

1
0
2
-0

1
0
2
-0

2
0
2
-0

3
0
2
-0

4
0
2
-0

5
0
2
-0

6
0
2
-0

7
0
2
-0

8
0
2
-0

9
0
2
-1

0
0
2
-1

1
0
2
-1

2
0
2
-1

3
0
2
-1

4
0
2
-1

5
0
2
-1

6
0
2
-1

7
0
2
-1

80

200

400

600

800

1000

1200

1400

1600

1800

m
ill

is
e
co

n
d
s 

p
e
r 

e
v
e
n
t

Inner detector algs in JetTauEtmiss reco of 500 events

InDetSiSpTrackFinder
InDetTRT_TrackSegmentsFinder

InDetAmbiguitySolver
InDetExtensionProcessor
InDetPixelClusterization
Other 24 algs
InDetTrackCollectionMerger
InDetSCT_Clusterization

InDetTRT_RIO_Maker

InDetTRT_Extension

InDetTRT_SeededTrackFinder

InDetPriVxFinder
InDetPriVxFinderNoBeamConstraint
InDetPriVxFinderSplit
InDetTRTRawDataProvider
InDetConversionFinder

Setup:
ami f411, run 189822, lb 120

CPU time breakdown per domain depending on the day after the

release build during the night

Measure while processing a data sample from 2011

Rocco Mandrysch (University of Iowa) Performance Monitoring and Optimization 17.10.2013 22 / 19



Summary and Conclusion

Results with PAPI of matrix/vector operations

Monitor in a simple test framework floating point operation of several

matrix/vector calls with PAPI

Compare CLHEP with other classes: Eigen and SMatrix

Floating operations of 4-dimensional vector/matrix

Operations CLHEP Eigen SMatrix/SVector

Matrix allocation 16 16 16

Vector allocation 4 4 4

Vector + Vector 4 2 4

Matrix × Vector 32 15 -

Matrix × Matrix 128 58 112

Matrix × Vector is not availble in SMatrix

Rocco Mandrysch (University of Iowa) Performance Monitoring and Optimization 17.10.2013 23 / 19



Summary and Conclusion

Speed comparison with 4× 4 square matrices

Additionally: setup of matrix multiplication with ’std::vectors’

basic setup (not vectorized)
optimized setup: vectorized without horizontal sums

Basic Multiplication (BasMult):

for(int i = 0; i < 16; i+=4){

for(int j = 0; j < 4; j++){

z[i+j] = x[i] * y[j] + x[i+1] * y[4 + j] \

+ x[i+2] * y[8 + j] + x[i+3] * y[12 + j];

}

}

Optimized Multiplication (OptMult):

for(int i = 0; i < 16; i+=4){

Vec4d r1 = Vec4d(x[i]) * Vec4d(y);

for(int j = 1; j < 4; j++){ r1 += Vec4d(x[i+j]) * Vec4d(&y[j*4]); }

r1.store(&z[i]);

}

Rocco Mandrysch (University of Iowa) Performance Monitoring and Optimization 17.10.2013 24 / 19



Summary and Conclusion

CLHEP

CLHEP - A Class Library for High Energy Physics

http://proj-clhep.web.cern.ch/proj-clhep/

A set of HEP-specific utility classes such as random generators,

physics vectors, geometry and linear algebra

CLHEP provides a generic interface for any-dimension matrix/vector

Problem:

Not maintained anymore

Not well performed (especially matrix operations)

Rocco Mandrysch (University of Iowa) Performance Monitoring and Optimization 17.10.2013 25 / 19

http://proj-clhep.web.cern.ch/proj-clhep/


Summary and Conclusion

Eigen

http://eigen.tuxfamily.org/

Pure C++ template library

header only → no binary to compile/install

Opensource: MPL2

It supports:

all matrix sizes

SIMD vectorization

compilers (gcc, icc, clang, ...)

It is optimized for

small fixed-size matrices

arbitrarily large dynamic size matrices

Rocco Mandrysch (University of Iowa) Performance Monitoring and Optimization 17.10.2013 26 / 19

http://eigen.tuxfamily.org/


Summary and Conclusion

SMatrix

ROOT C++ package for high performance vector and matrix

computations

http://root.cern.ch/root/html/MATH SMATRIX Index.html

Implemented as expression templates

Provide matrix/vector classes of arbitrary dimensions and type

Classes are templated on the dimension of the matrix/vector and on

the scalar type

Problem:

Supports only symmetric matrices

Not complete linear algebra package such as Intel MKL or Eigen

Rocco Mandrysch (University of Iowa) Performance Monitoring and Optimization 17.10.2013 27 / 19

http://root.cern.ch/root/html/MATH_SMATRIX_Index.html


Summary and Conclusion

Intel Math Kernel Library (MKL)

http://software.intel.com/en-us/intel-mkl

Includes:

Basic Linear Algebra Subprograms (BLAS)

LAPACK routines for solving systems of linear equations

Optimized:

on modern Intel processors

for large matrices and BLAS operations: C = αAB + βC

Rocco Mandrysch (University of Iowa) Performance Monitoring and Optimization 17.10.2013 28 / 19


	Introduction
	Performance measurements
	Math libraries
	Monitoring tools

	Performance comparison studies
	Matrix operations
	Trigonometric functions

	Summary and Conclusion

