Summary of Track 6 Facilities, Production Infrastructures, Networking, Collaborative Tools

> Track 6 conveners, presented by Helge Meinhard / CERN-IT 18 October 2013



## Track 6 Conveners

- Brian Bockelman
- Ian Collier
- Alessandro De Salvo
- Maria Girone
- Steven Goldfarb
- Burt Holzman
- Helge Meinhard
- Ray Pasetes

Track 6 summarv

Wim Heubers (LOC)



## Usual disclaimer

- Credit to presenters and session chairs
- All errors, omissions, ... are mine
- Posters not covered sorry



## **Statistics**

83 abstracts; 81 accepted, 2 withdrawn
28 oral presentations, 53 posters

| Торіс                      | No contributions |
|----------------------------|------------------|
| Facilities                 | 6                |
| Production infrastructures | 50               |
| Networking                 | 15               |
| Collaborative tools        | 10               |



## **Facilities**



Arduino and Nagios integration for monitoring (Victor Fernandez, U Santiago de Compostela)

- Aim: address monitoring needs of their compute farm
- Chose home-made integration of Arduino and Nagios for cost reasons



#### Fernandez, U Santiago de Compostela











4 11 K 4 11 K 4

SynapSense wireless environmental monitoring system of RACF at BNL (Alexandr Zaytsev, BNL)

- Environmental monitoring needed that is easy to install – no complex wiring
  - SynapSense: wireless sensors



# Zaytsev, BNL

present configuration the the In 150+ stations has base system provided with 520+ low systematic temperature/humidity/pressure sensors reporting to the central every 5 minutes (0.27M servers readings per day)

Ethernet Gateway (Ext. AC PSU) Pressure Differential Sensor Base Station

(Local A4 Batteries)

**Building Blocks** 



Rack / CRAC Unit LiveImaging<sup>™</sup> Unit Sensor Base Station (Local A4 Batteries)



The integral cost of the system is not exceeding the cost of 2 racks of equipment typical for RACF Linux farms

 There is a potential of extending the SynapSense<sup>™</sup> monitoring system to include power consumption monitoring for all the CRAC and PDU devices in the facility and SynapSense<sup>™</sup> ActiveControl<sup>™</sup> features, thus providing real time estimated of the PUE of the data center and the means to optimize it



#### Operating dedicated data centres – is it costeffective? (Tony Wong, BNL)

 Cost comparison of BNL facilities with commercial cloud offerings (EC2, GCE)



# Wong, BNL

|            | <u>3,</u>                                                                                                                                            | Includes 2000 2012 data                |                                                  |              |  |  |
|------------|------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|--------------------------------------------------|--------------|--|--|
|            | USATLAS                                                                                                                                              | RHIC                                   | Includes 2009-2013 data                          |              |  |  |
| Server     | \$228/yr                                                                                                                                             | \$277/yr                               | BNL-imposed overhead included                    |              |  |  |
| Network    | \$28/yr                                                                                                                                              | \$26/yr                                | Amortize server and r                            | network over |  |  |
| Software   | \$3/yr                                                                                                                                               | \$3/yr                                 | use only physical core                           | al cores     |  |  |
| Staff      | \$34/yr                                                                                                                                              | \$34/yr                                | RACF Compute Cluster staffed                     |              |  |  |
| Electrical | \$12/yr                                                                                                                                              | \$16/yr                                | 4 FTE (\$200k/FTE)                               |              |  |  |
| Space      | \$27/yr                                                                                                                                              | \$13/yr                                | About 25-31% contribution from other-than-server |              |  |  |
| Total      | \$332/yr (\$0.038/hr)                                                                                                                                | \$369/yr (\$0.042/hr)                  |                                                  |              |  |  |
| •          | Cost of computin<br>centers compare<br>- \$0.04/hr (RACF)<br>- Near-term trend<br>• Hardware<br>• Infrastructure<br>• Staff =><br>• Data duplication | ated data<br>cloud costs<br>vill raiso |                                                  |              |  |  |
|            | costs and comple                                                                                                                                     | ride                                   | 11                                               |              |  |  |

# Hardware at remote hosting centre (Olof Barring, CERN)

- Wigner research centre in Hungary won open call for tender for extending CERN's computer centre capacity
- Issues around scalability and non-availability of physical access addressed



# Barring, CERN

Preparation

- Review main processes
  - Delivery requirements
  - Hardware handling
  - Stock management
  - Inventory
  - Network registration
  - Burn-in
  - Production deployment
  - Remote console
  - Onsite maintenance

CERN

Department

# Barring, CERN

#### Conclusions

CERN**IT** Department

- Remote co-location is our way to scale beyond local power limitation
- Wigner contract awarded following competitive tender
- Preparation had positive impact also on local operation
  - Design workflows and automation with remote operation in mind
- Production service is up and running
  - But work still required to finalise operational procedures
- Started preparations for large scale (90%) deployment of new deliveries in 2014-15



## **Production Infrastructures**



## ATLAS cloud computing R&D project (Randy Sobie, U Victoria)

- Private / academic clouds HLT farm
- Public / hybrid clouds: Amazon EC2, Google compute engine
- CloudScheduler as "middleware" between HTCondor and cloud



## Sobie, U Victoria



# Fabric management (r)evolution at CERN (Gavin McCance, CERN)

- Agile Infrastructure project addressing
  - virtual server provisioning
  - configuration
  - monitoring



## McCance, CERN

### Agile Infrastructure "stack"

- Our current stack has been stable for one year now
  - See plenary talk at last CHEP (Tim Bell et al)
- Virtual server provisioning
  - Cloud "operating system": OpenStack -> (Belmiro, next)
- Configuration management
  - Puppet + ecosystem as configuration management system
  - Foreman as machine inventory tool and dashboard
- Monitoring improvements
  - Flume + Elasticsearch + Kibana -> (Pedro, next++)



## McCance, CERN

#### **Community collaboration**

- Traditionally one of HEPs strong points
- There's a large existing Puppet community with a good model - we can join it and open-source our modules
- New HEPiX working group being formed now
  - Engage with existing Puppet community
  - Advice on best practices
  - Common modules for HEP/Grid-specific software
  - <u>https://twiki.cern.ch/twiki/bin/view/HEPIX/ConfigManagem</u> ent
  - https://lists.desy.de/sympa/info/hepix-config-wg



## McCance, CERN

### Summary

- The Puppet / Foreman / Git / Openstack model is working well for us
  - 4000 hosts in production, migration ongoing
- Key technical challenges are scaling and integration which are under control
- Main challenge now is people and process
  - How to maximise the utility of the tools
- The HEP and Puppet communities are both strong and we can benefit if we join them together

https://twiki.cern.ch/twiki/bin/view/HEPIX/ConfigManagement http://github.com/cernops



CHEP 2013

21

Production large-scale cloud infrastructure experience at CERN (Belmiro Moreira, CERN)

- Motivation: Improve
  - operational efficiency
  - resource efficiency
  - responsiveness



## Moreira, CERN



## Moreira, CERN

#### **CERN** Cloud Infrastructure adoption

Number of VMs



Number of Users



| Ce11                      | tto da a          | Солна                  | a.xxx (Gcs)                | ziek (m)           | Var                 |
|---------------------------|-------------------|------------------------|----------------------------|--------------------|---------------------|
| Geneva<br>wigner<br>rocal | 375<br>291<br>666 | 10976<br>9312<br>20299 | 21.642<br>192.96<br>399.59 | 612<br>691<br>1123 | 1619<br>674<br>2112 |
| •                         |                   | •                      |                            | (II)               | V10/20130           |

## Moreira, CERN

#### Next Challenges

- Growing the infrastructure
  - +100 compute nodes per week
  - 15000 servers more than 300000 cores
- Migration from Grizzly to Havana
- nova-network deprecation
- Kerberos, X.509 user certificate authentication
- Keystone Domains



# Agile Infrastructure monitoring (Pedro Andrade, CERN)

- Motivation
  - Several independent monitoring activities in CERN IT
  - Combination of data from different groups necessary
  - Understanding performance became more important
  - Move to a virtualised dynamic infrastructure

#### Challenges

- Implement a shared architecture and common toolchain
- Delivered under a common collaborative effort



## Andrade, CERN



## Andrade, CERN

| pu<br>itie  | es Deplo                                                                                                                                                              | byl            | men                                        | it       |       |                                              |                 |                                                                    | CERN                                 | <b>T</b><br>Depart |
|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--------------------------------------------|----------|-------|----------------------------------------------|-----------------|--------------------------------------------------------------------|--------------------------------------|--------------------|
| Đ           | emon 🗘                                                                                                                                                                |                |                                            |          |       |                                              |                 |                                                                    | Kibi                                 | na )               |
| Collinois a | Sm 15m th Go<br>Relative   Atrodute   Since   C Auto                                                                                                                  | 12h<br>-ostach | 24h 2d                                     | 7d 30d   |       |                                              |                 |                                                                    | Deinbox<br>Br                        | nd Control         |
| Liners o    | field god<br>field , @him admitte_state<br>gooty: "amonfumerpetter"                                                                                                   | 70x            | Neist could<br>Neist (chess<br>geory "prod | androwed | 0FC X | field mail<br>field (glotth antly<br>query - | GP 24           | filme <u>musi</u><br>field: (pmer<br>from: '2013-<br>to: '2013-10- | Aamp<br>10-12703-4034<br>12709-40353 | (78 x<br>(78 x     |
| 0           | CPU Utilization (percer                                                                                                                                               | itage)         | (                                          |          |       | Network Utili                                | zation (KB/     | s)                                                                 |                                      |                    |
| num         | Q Zoom Out   ● User (245447) ● System (245447) ● Nice (245447)<br>◎ title (245447) ◎ toWait (245447) ● IRO (245447) ◎ StatRO (245447) per Sm)<br>(\$778529 mb)<br>120 |                |                                            |          |       | Q, Zoon: Out   ● Ing<br>500<br>400           | ut (433244) 🏶 G | Adput (433244) p                                                   | er Sm ( (BSG4B)                      |                    |
|             | 100<br>80<br>60                                                                                                                                                       |                |                                            |          |       | 300 ~~~                                      | ~               | m                                                                  | 2                                    | h                  |
|             | 40<br>20                                                                                                                                                              |                |                                            |          |       | 0 06-90 0                                    | 7 90 08 5       | 0 09:00                                                            | 10.00                                | 11.00              |



## Andrade, CERN

| pu<br>itie | s Dep                                                                                                                                                                      | loy                 | men                   | t               |       |                                            |                 |                                                                     | CERN                                   | <b> T</b><br>Depart |
|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-----------------------|-----------------|-------|--------------------------------------------|-----------------|---------------------------------------------------------------------|----------------------------------------|---------------------|
| Đ          | emon 🗘                                                                                                                                                                     |                     |                       |                 |       |                                            |                 |                                                                     | Kib                                    | ana 3               |
| Controls o | Sm 15m 1h Gh<br>Relative   Absolute   Since                                                                                                                                | 12h<br>Luio-refrech | 24h 2d                | 7d 30d          |       |                                            |                 |                                                                     | Deifton<br>Br                          | erd Control         |
| Liners o   | field gold<br>field (gloins admitter, state<br>goory "second-marginiter"                                                                                                   | (20 A               | Net Call<br>Net Chest | andromant ador" | 0FO.K | field mail<br>field (glotth with)<br>query | (PD)            | time <u>csst</u><br>field : @timer<br>from: '2013-<br>to: '2013-10- | Namp<br>10-12703-40-3<br>12708-40-35-3 | (28×                |
| 0          | CPU Utilization (perc                                                                                                                                                      | entage              | ,                     |                 |       | Network Utiliz                             | ation (KB/s     | ;)                                                                  |                                        |                     |
| Graph      | Q. Zoom Out   Cuter (245447) C System (245447) Nice (245447)<br>is the (245447) III IOWalt (245447) IIII (245447) IIIII IIIII (245447) IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII |                     |                       |                 |       | ©, Zooni Out   ● Inpo<br>500<br>408        | # (433244) 🏶 Ov | Aput (433244) p                                                     | er Sm ( (86648                         |                     |
|            | 100<br>80<br>60                                                                                                                                                            |                     |                       |                 |       | 300 200                                    | ~               | m                                                                   | 2                                      | h                   |
|            | 40<br>20                                                                                                                                                                   |                     |                       |                 |       | 0 06-00 01                                 | 7 00 08 00      | 0 09:00<br>2 10/12                                                  | 10.00<br>10/12                         | 11.00               |



### The CMS openstack, opportunate, overlay, online-cluster cloud (Jose Antonio Coarasa, CERN)

- Idea: Reuse CMS Data Acquistion System as an opportunistic Open-Stack based cloud.
- A cloud of opportunity when CMS is not taking data, give computing power of HLT to Offline. Online must be able to "take back" computing resources quickly.
  - Overlays on top of existing cluster; OpenStack must deal with existing complex network configuration.
- Cloud has been running since January 2013.
  - Has run up to 6,000 jobs at a time; a significant resource in CMS Offline.





# Opportunistic resource usage in CMS (Peter Kreuzer, RWTH Aachen)

- CMS has a relatively flat funding budget for hardware.
  - CMS can keep its hardware fully occupied. Investment in people greater than investment in computing hardware. Must keep people productive!
  - Goal: Allow people to dynamically integrate shared resources.
- Three types of resource access considered
- Non-CMS grid site, opportunistic or Allocation-based cluster (no grid interface), or Virtualization-based resources (OpenStack, EC2).
- Operational issues how does CMS integrate temporary resources into a system designed for permanent resources?
  - Either put all resources into a "fake" site or dedicated site for very large opportunistic resources.
    - Testing already done at large-scale; sustainable operations is the current challenge.



•

Operating the World-wide LHC computing grid (Andrea Sciaba, CERN)

- Dedicated effort as a follow-up from Technical Evolution groups in 2011/2012
- Activity resulted in a series of recommendations to be followed up by a new, dedicated coordination body



## Sciaba, CERN

#### The WLCG operations coordination working group

- Established in October 2012
- Acts as core operations and deployment coordination team
  - Manages operational issues, service deployment in synergy with EGI, OSG, NorduGrid
  - Discusses experiments plans and needs
  - Defines actions and work plans
  - Forms time-limited task forces on specific issues
  - Ensures communication among experiments, sites, projects
- All stakeholders are represented
  - LHC experiments, site regions, Tier-1's, Grid projects
  - Fortnightly meetings, quarterly planning meetings
  - Largely based on voluntary effort from the entire WLCG community

M. Girone, Operations Coordination Team, 11/07/2012, WLCG GDB

## Sciaba, CERN



#### Task Forces review

- CVMFS
- perfSONAR
- SHA-2
- gLExec
- Tracking tools
- Squid monitoring
- FTS 3
- Xrootd
- SL6
- Machine/job features

# Testing as a service with HammerCloud (Ramon Medrano Llamas, CERN)

- Large-scale flexible grid testing increasingly important and popular
- 50 M jobs / year
- Requires flexible infrastructure for rapid deployment


### Medrano Llamas, CERN

#### New use cases

- Stress testing of sites
- Functional testing of sites 12,000 test/year
- AFT/PFT testing suite
- Benchmarking testing NEW!
- Cloud resource validation NEW!
- Athena nightly build system NEW!
- XRootD federation (FAX) NEW!
- ROOT I/O and WAN tests NEW!



37

### Medrano Llamas, CERN

#### Requirements

- 1. Elastic infrastructure (OpenStack)
- 2. Cloud orchestrator
- 3. Code sanitation (Gerrit)
- 4. Configuration Management (Puppet)
- 5. Deployment procedures





38

### Medrano Llamas, CERN

#### **Dynamic testing scheduling**

- 1. Test is requested (user, API, cron)
- 2. Creation of the VMs on demand
  - Isolation
  - Reliability
  - Elasticity
- 3. Configuration and startup of the VM
- 4. ...test runs...

IT-SDC

5. Cleanup and destroy

39

Performance monitoring of ALICE DAQ system with Zabbix (Adriana Telesca, CERN)

- Growing DAQ farm requires more flexible, powerful system monitoring
- Comprehensive study of candidate systems has resulted in choosing Zabbix



## Telesca, CERN



#### The ALICE Data Acquisition system





## Telesca, CERN



#### Tools comparison



| Name               | SNMP                                       | Communit<br>y | Granularity              | Auto<br>Discovery | Free | Total |  |  |  |  |
|--------------------|--------------------------------------------|---------------|--------------------------|-------------------|------|-------|--|--|--|--|
| lcinga             | 2                                          | 2             | 1 - 1 minute<br>/metric  | 2                 | 1    | 12    |  |  |  |  |
| Cacti              | 2                                          | 2             | 1 - 1 minute /<br>metric | 1                 | 1    | 12    |  |  |  |  |
| Zenoss             | 1                                          | 1             | 1-1 minute<br>/collector | 2                 | 1    | 11    |  |  |  |  |
| Zabbix             | 2                                          | 2             | 2 - No limit<br>/metric  | 2                 | 1    | 16    |  |  |  |  |
| Splunk             | 2                                          | 2             | 2 - No limit /<br>metric | 2                 | 0    | 15    |  |  |  |  |
| MonALISA           | 2                                          | 1             | 1 - 1 minute<br>/metric  | 2                 | 1    | 14    |  |  |  |  |
| 0-1 Absent-Present |                                            |               |                          |                   |      |       |  |  |  |  |
|                    | 0-1-2 Absent - Present but not good - Good |               |                          |                   |      |       |  |  |  |  |

15/10/2013

Adriana Telesca, CHEP 2013

11/24

### Telesca, CERN





Adriana Telesca, CHEP 2013

Beyond core count: new mainstream computing platforms for HEP workloads (Pawel Szostek, CERN)

- Improvements of performance and performance/watt by
  - Increasing core counts
  - Shrinking structure sizes
  - Introducing new microarchitectures



### Szostek, CERN

CERNopenlab

#### Hardware setup for tests

Intel server CPUs

"Sandy Bridge" E5-2690
"Ivy Bridge" E5-2695 v2
2 sockets: 16 and 24 cores

Shrink from 32 to 22nm Same cache, lower TDP

#### Intel workstation CPUs

- "Ivy Bridge" E3-1265L v2
- "Haswell" E3-1285L v3
- Single socket: 4 cores, 8 threads
- New micro-architecture > AVX2
  - Wider core (4<sup>th</sup> ALU, 3<sup>rd</sup> AGU, 2<sup>nd</sup> branch prediction unit)



### Szostek, CERN

| ÇĒ | RNopenlab                         | \ \                                 | HEP                                  | per Watt                                     |                                         |  |
|----|-----------------------------------|-------------------------------------|--------------------------------------|----------------------------------------------|-----------------------------------------|--|
| L  |                                   | "Sandy<br>Bridge" server<br>E5-2690 | "Ivy Bridge"<br>server<br>E5-2690 V2 | "Ivy Bridge"<br>workstation<br>(E3-1265L V2) | "Haswell"<br>workstation<br>E3-1285L V3 |  |
|    | HS06                              | 381                                 | 463                                  | 94                                           | 115                                     |  |
|    | Standard<br>energy<br>measurement | 362                                 | 290                                  | 54                                           | 56                                      |  |
| 7  | HS06 per<br>Watt                  | 1.04                                | 1.60                                 | 1.73                                         | 2.06                                    |  |

#### HEPSPEC06/W (higher is better)



- From IVB to HSW: 20% improvement (incl. motherboard)
- From SNB-EP to IVB-EP: 54%
- High values for desktops are due to manually optimized energy use: barebone systems



The effect of flashcache and bcache on I/O performance (Jason Alexander Smith, BNL)

- Flashcache, bcache: Linux kernel modules for block caching of disk data on fast devices (such as SSDs)
- Flashcache
  - Developed by Facebook in 2010
  - Not included in Linux kernel
  - Bcache: different approach with similar goals
    - In Linux kernel as of 3.10
  - Result: good for small records/files



# Smith, BNL

| Evaluation | Hardware | /Configuration | (Cont.) |
|------------|----------|----------------|---------|
|            |          |                | •       |

Software RAID0, Flashcache and Bcache Benchmarks Dell PowerEdge R620 2 8-core Xeon E5-2660@2.20\_GHz CPUs (HT on: 32 logical cores total) 48 GB DDR3 1600 MHz RAM PERC H310 disk controller 64-bit Scientific Linux 6.4 (kernel 2.6.32-358.6.2.el6.x86\_64, 3.11.1 for Bcache tests) 8 2.5" SATA hard drives in a software RAID0 configuration Only 7 spindles used in the array for Flashcache and Bcache tests Seagate ST9500620NS 2.5" drive 500 GB, SATA 3.0 Gbps 64 MB cache 7200 RPM Firmware release AA09

SSD TRIM ("discard" mount option) not enabled. EXT4 used in all tests

Tested both "clean" and "dirty" Flashcache and Bcache configurations Clean - no data written besides filesystem metadata before benchmark Dirty – benchmark run multiple times in succession before final test

# Smith, BNL

#### Conclusions

The single SSD tested provided excellent random I/O characteristics, particularly for small record sizes, but did not provide the performance of a multi-spindle software RAID0 configuration for larger record sizes The software RAID0 configuration provided roughly double the

random I/O performance compared to the SSD for large records and for parallel workloads

But it consisted of 8 times the number of drives Single SSD random I/O performance was significantly better than a single SATA drive

Flashcache and Bcache with an SSD cache generally augmented the I/O performance of a single SATA disk for files that fit within the cache Generally true for both random and sequential I/O Smaller gains, or performance losses, were typically seen when the cache was preloaded with dirty data during bonnie++ testing Probably not suitable for scratch space utilization, since in this use case we're likely dealing with large files that are only written and/or read once

Would likely benefit database, webserver, or other applications where a set of relatively small files are repeatedly read/written



#### Challenging data and workload management in CMS computing with network-aware systems (Tony Wildish, Princeton)

- PhEDEx controls bulk data-flows in CMS.
  - Basic architecture is 10 years old. Retry algorithms are TCP-like (rapid backoff / gentle retries). No understanding of the underlying network activity.
  - Complex transfer mesh -- since it no longer follows the MONARC model, we no longer have an analytic model of CMS transfers. Why are datasets moved? Which movements are correlated?
  - Working on long-term use cases and models for integrating network knowledge:
    - ANSE project working to integrate virtual network circuit control into PhEDEx. Explicitly control the networks.
    - Hope is that this will reduce latencies in PhEDEx.



### Wildish, Princeton



| Average rate<br>last year | Production | Debug      | Total      |
|---------------------------|------------|------------|------------|
| T0 -> T1                  | 230 MB/sec | 100 MB/sec | 330 MB/sec |
| T2 -> T1                  | 190        | 200        | 390        |
| T1 -> T2                  | 620        | 230        | 850        |
| T2 -> T2                  | 260        | 180        | 440        |
| Total                     | 1300       | 710        | 2010       |

Production instance is real data

Debug instance is for commissioning and link-tests

- 1/3 of total traffic is for knowledge of network state

Average rate ~ 2 GB/sec CMS-wide Not currently - sustained over last 3 years. *bandwidth-limited*, but - not b/w limited preparing for the future! 9



CMS

T. Wildish / Princeton

### Networking



Deployment of PerfSONAR-PS networking monitoring in WLCG (Simone Campana, CERN)

- Introduction to PerfSONAR and PerfSONAR-PS
- Deployment plan for WLCG
- Status



### Campana, CERN

#### perfSONAR and perfSONAR-PS

- perfSONAR is an infrastructure for network performance monitoring
  - Organized as consortium of organizations
    - · building an interoperable network monitoring middle-ware
  - Defines the service types and a protocol for them to communicate
  - Develops the software packages to implement the services
- perfSONAR-PS is an open source development effort based on perfSONAR
  - targeted at creating an easy-to-deploy and easy-to-use set of perfSONAR services
  - Comes with all-in-one solution (CD or USB) or single packages for CentOS 5 and 6





## Campana, CERN

#### WLCG deployment plan

WLCG choose to deploy perfSONAR-PS at all sites worldwide
 > A dedicated WLCG Operations Task-Force was started in Fall 2012

#### Sites are organized in regions

- Based on geographical locations and experiments computing models
- All sites are expected to deploy a bandwidth host and a latency host
- Regular testing is setup using a centralized ("mesh") configuration
  - Bandwidthtests: 30 secondstests
    - every 6 hours intra-region, 12 hours for T2-T1 inter-region, 1 week elsewhere
  - Latency tests; 10 Hz of packets to each WLCG site
  - Traceroute tests between all WLCG sites each hour
  - Ping(ER) tests between all site every 20 minutes





### Campana, CERN

#### perfSONAR Deployment Status



#### Big data over a 100G network at Fermilab (Gabriele Garzoglio, FNAL)

- One of our remote presentations
- Goal: verify whole stack of software and services end-to-end for effectiveness at 100G across participating labs
- Results on GridFTP/SRM/GlobusOnline, xrootd, squid/Frontier



#### 100G High Throughput Data Program

- 2011: Advanced Network Initiative (ANI) Long Island MAN (LIMAN) testbed.
  - GO / GridFTP over 3x10GE.
- 2011-2012: Super Computing '11
  - Fast access to ~30TB of CMS data in 1h from NERSC to ANL using GridFTP.
  - 15 srv / 28 clnt 4 gFTP / core; 2 strms; TCP Win. 2MB
- 2012-2013: ESnet 100G testbed



- Tuning parameters of middleware for data movement: xrootd, GridFTP, SRM, Globus Online, Squid. Achieved ~97Gbps
  - Rapid turn around on the testbed thank to custom boot images
- Commissioning Fermilab Network R&D facility: 12 nodes at 8.5 Gbps per 10G node
- Test NFS v4 over 100G using dCache (collab. w/IBM research)
- Fall 2013 / Winter 2014: 100G Endpoint at Fermilab
  - Validate hardware link w/data transfer apps with UFL and others. Talk to me if you want to participate in these activities.
  - Demonstrate storage-to-storage 100G rates





#### GridFTP / SRM / GlobusOnline Tests

#### Data Movement using GridFTP

- 3rd party Srv to Srv trans.: Src at NERSC / Dest at ANL
- Dataset split into 3 size sets
- Large files transfer performance ~ 92Gbps
- GridFTP logging was through NFS on 1GE link: file transfers blocked on this.
- Lot of Small Files (LOSF) transfer performance improved with pipelining

97 Gbps





Pipelining ("FTP cmd in-flight") mitigates the negative effects of high-latency on transfer performance



1.00.0

and and a family of the second states of the

Optimal performance: 97 Gbps w/ GridFTP 2 GB files – 3 nodes x 16 streams / node

10.00 12.40 10.00 10.00 10.40 14.00 14.00 14.40 10.00 10.00 10.40

#### **XRootD** Tests

- Data Movement over XRootD, testing LHC experiment (CMS / Atlas) analysis use cases.
  - Clients at NERSC / Servers at ANL
  - Using RAMDisk as storage area on the server side
- Challenges
  - Tests limited by the size of RAMDisk
  - Little control over xrootd client / server tuning parameters







Calculation of the scaling factor between 1 NIC and an aggregated 12 NIC for datasets too large to fit on the RAM disk

0.83

0.83

86.7

78.7

8.7 (8 clients)

7.9 (4 clients)

4

#### Squid / Frontier Tests

- Data transfers
  - Cache 8 MB file on Squid This size mimics LHC use case for large calib. data
  - Clients (wget) at NERSC / Servers at ANL
  - Data always on RAM
- Setup
  - Using Squid2: single threaded
  - Multiple squid processes per node (4 NIC per node)
  - Testing core affinity on/off: pin Squid to core i.e. to L2 cache
  - Testing all clnt nodes vs. all servers AND aggregate one node vs. only one server





- Results
  - Core-affinity improves performance by 21% in some tests
  - Increasing the number of squid processes improves performance
  - Best performance w/ 9000 clients: ~100 Gbps

# Network architecture and IPv6 deployment at CERN (David Gutierrez Rueda, CERN)

- Core network interconnecting all infrastructure, including Wigner, is IPv6 ready
  - Non-blocking 1 Tbps



### Gutierrez Rueda, CERN

#### External Network

- IS NOT
- Public general purpose connections
  - Full BGP Internet routing table
  - Geant, CIXP, ISPs
- Private WLCG
  - LHCOPN
    - 70Gbps peaks to T1
  - LHCONE

| Brocade Routers      | 8        |
|----------------------|----------|
| BGP Peerings         | 86       |
| Aggregated BW        | 232 Gbps |
| IPv4/IPv6 Dual Stack | YES      |





### Gutierrez Rueda, CERN



### Gutierrez Rueda, CERN



#### Application performance evaluation and recommendations for the DYNES instrument (Shawn McKee, U Michigan)

- DYNES is a "distributed instrument" in the US: has networking infrastructure at ~40 universities for creating virtual circuits.
  - Solving a mystery: When creating circuits 1Gbps, they were getting 200Mbps performance.
    - Traditional network debugging techniques yielded nothing.
    - Solution: Using the Linux outgoing packet queue management layer to pace packets on the host at less than the circuit speed. Yielded >800 Mbps.
    - Belief the issue is QoS in the internal implementation of one hop in the circuit is at fault.
    - Lesson: Virtual circuits still depend heavily on the underlying hardware implementation. The "virtualization" is perhaps not a complete extraction. You must know your circuit!



•

•

### McKee, U Michigan

#### **TC Test Results**

| [dynes@: | fdt | -wisc  | ~]\$  | nu | ittcp   | -T   | 30  | -i | 1   | -p   | 5679 | -P | 5678 | 10.10 | .200. |
|----------|-----|--------|-------|----|---------|------|-----|----|-----|------|------|----|------|-------|-------|
| 2.1875   | MB  | / 1.00 | ) sec | -  | 18.348  | 6 Mb | DDS | 0  | ret | rans |      |    |      |       |       |
| 8.3125   | MB  | / 1.00 | ) sec | -  | 69.728  | 1 Mh | ps  | 1  | ret | rans |      |    |      |       |       |
| 28.3125  | MB  | / 1.00 | ) sec | -  | 237.517 | 0 Mb | DDS | 0  | ret | rans |      |    |      |       |       |
| 99.1875  | MB  | / 1.00 | ) sec | -  | 832.055 | 9 Mb | DS  | 0  | ret | rans |      |    |      |       |       |
| 108.5000 | MB  | / 1.00 | ) sec | -  | 910.183 | 1 Mh | ps  | 0  | ret | rans |      |    |      |       |       |
| 108.4375 | MB  | / 1.00 | ) sec | -  | 909.607 | 8 Mb | DDS | 0  | ret | rans |      |    |      |       |       |
| 108.4375 | MB  | / 1.00 | ) sec | -  | 909.670 | 6 Mb | DS  | 0  | ret | rans |      |    |      |       |       |
| 108.4375 | MB  | / 1.00 | ) sec | -  | 909.621 | 5 Mb | pos | 0  | ret | rans |      |    |      |       |       |
| 108.3125 | MB  | / 1.00 | ) sec | -  | 908.574 | 7 Mb | DDS | 0  | ret | rans |      |    |      |       |       |
| 108.3750 | MB  | / 1.00 | ) sec | -  | 909.135 | 4 Mb | DS  | 0  | ret | rans |      |    |      |       |       |
| 108.3750 | MB  | / 1.00 | ) sec | -  | 909.136 | 3 Mb | ps  | 0  | ret | rans |      |    |      |       |       |
| 108.2500 | MB  | / 1.00 | ) sec | -  | 908.060 | 5 Mb | DS  | 0  | ret | rans |      |    |      |       |       |
| 108.3750 | MB  | / 1.00 | ) sec | -  | 909.121 | 8 Mh | DS  | 0  | ret | rans |      |    |      |       |       |
| 108.3125 | MB  | / 1.00 | ) sec | -  | 908.591 | 1 Mb | pos | 0  | ret | rans |      |    |      |       |       |
| 108.3125 | MB  | / 1.00 | ) sec | -  | 908.590 | 2 Mb | ps  | 0  | ret | rans |      |    |      |       |       |
| 108.4375 | MB  | / 1.00 | ) sec | -  | 909.613 | 3 Mb | ps  | 0  | ret | rans |      |    |      |       |       |
| 108.5000 | MB  | / 1.00 | ) sec | -  | 910.173 | 1 Mb | DS  | 0  | ret | rans |      |    |      |       |       |
| 108.4375 | MB  | / 1.00 | ) sec | -  | 909.653 | 3 Mb | ps  | 0  | ret | rans |      |    |      |       |       |
| 108.3750 | MB  | / 1.00 | ) sec | -  | 909.119 | 9 Mb | DS  | 0  | ret | rans |      |    |      |       |       |
| 108.4375 | MB  | / 1.00 | ) sec | -  | 909.638 | 8 Mb | DS  | 0  | ret | rans |      |    |      |       |       |
| 108.3750 | MB  | / 1.00 | ) sec | -  | 909.115 | 4 Mb | ps  | 0  | ret | rans |      |    |      |       |       |
| 108.4375 | MB  | / 1.00 | ) sec | -  | 909.640 | 6 Mb | DDS | 0  | ret | rans |      |    |      |       |       |
| 108.3750 | MB  | / 1.00 | ) sec | -  | 909.115 | 4 Mb | ps  | 0  | ret | rans |      |    |      |       |       |
| 108.3125 | MB  | / 1.00 | ) sec | -  | 908.591 | 1 Mb | DDS | 0  | ret | rans |      |    |      |       |       |
| 108.4375 | MB  | / 1.00 | ) sec | -  | 909.638 | 8 Mb | DS  | 0  | ret | rans |      |    |      |       |       |
| 108.5000 | MB  | / 1.00 | ) sec | -  | 910.164 | 0 Mb | ops | 0  | ret | rans |      |    |      |       |       |
| 108.3125 | MB  | / 1.00 | ) sec | -  | 908.559 | 3 Mb | DDS | 0  | ret | rans |      |    |      |       |       |
| 108.5000 | MB  | / 1.00 | ) sec | -  | 910.196 | 7 Mb | DS  | 0  | ret | rans |      |    |      |       |       |
| 108.4375 | MB  | / 1.00 | ) sec | -  | 909.639 | 7 Mb | ps  | 0  | ret | rans |      |    |      |       |       |
| 108.3125 | MB  | / 1.00 | ) sec | -  | 908.591 | 1 Mb | DS  | 0  | ret | rans |      |    |      |       |       |

2965.6678 MB / 30.12 sec = 825.9052 Mbps 3 %TX 8 %RX 1 retrans 36.73 msRTT

 Very close to the 900 Mbps shaped request. This works much better. Retry with 1000 Mbps TC config next



WLCG security: a trust framework for security collaboration among infrastructures (David Kelsey, STFC-RAL)

- All about trust of infrastructures
- Building on experience with EDG/EGEE/EGI, OSG, WLCG



# Kelsey, STFC-RAL (1)

#### Security for Collaborating Infrastructures (SCI)

- A collaborative activity of information security officers from large-scale infrastructures

   EGI, OSG, PRACE, EUDAT, CHAIN, WLCG, XSEDE, ...
- Developed out of EGEE started end of 2011
- We are developing a Trust framework
  - Enable interoperation (security teams)
  - Manage cross-infrastructure security risks
  - Develop policy standards
  - Especially where not able to share identical security policies



# GPU-based network traffic monitoring and analysis tools (Phil DeMar, FNAL)

- Another remote presentation
- 10G common in servers, 40G and 100G coming on backbones
- Current flow- and traffic-based tools will break down



### DeMar, FNAL (1)

#### **Packet-Based Analysis**

- Our preferred choice for 40/100GE traffic analysis:
  - Flow data limitations (sampled) constrain flow-based analysis
- Characteristics of packet-based network monitoring & analysis applications
  - Time constraints on packet processing.
  - Highly compute and I/O throughput-intensive
  - High levels of data parallelism.
    - Each packet can be processed independently
  - Extremely poor temporal locality for data
    - Typically, data processed once in sequence; rarely reused





# US LHC Tier-1 WAN data movement security architectures (Phil DeMar, FNAL)

- Remote again...
- Both FNAL and BNL chose to separate science data movements from general network traffic


### DeMar, FNAL (2)

#### Summary

- Separating science data movement from general network traffic has worked well at US-LHC Tier-1s
  - Enabled us to meet needs of both LHC stakeholders & general users, but not at each other's expense
  - Science DMZ architectures based around PBR for LHC traffic:
    - Avoids performance issues with overloading perimeter security tools
- Our implementations work well for us because:
  - We are dealing with established traffic characteristics
  - Our stakeholders are well-organized & long-lived
  - May not translate well to other disciplines
- Looking toward OpenFlow as a more standard approach to separate out our science data movement



73

# WLCG and IPv6: The HEPiX IPv6 working group (David Kelsey, STFC-RAL)

- IPv4 address depletion coming soon...
- Network infrastructures increasingly ready for IPv6
- Many services not yet tested, much work to be done still



### Kelsey, STFC-RAL (2)

### Timetable WLCG IPv6 transition

- In 2012 we said:
  - Support for IPv6-only clients \*not before\* Jan 2014
- Still true!
  - And likely to be much later
  - Needs MANY sites to support IPv6
- Sysadmins, Security staff, Monitoring and Operations
  - Training required
  - New operational procedures
- The WG will continue to test Use Cases
- Aim for dual-stack on most/many services when?
- Aiming for an IPv6 workshop at CERN in Spring/Summer 2014



17/10/2013

HEPIX IPv6 at CHEP2013

### **Collaborative Tools**



### Indico 1.0+ (Jose Benito Gonzalez Lopez, CERN)

- Remarkable growth, very popular service
- Added user dashboard, version optimised for mobile devices, ...
- Coming: rich abstract editor, configurable registration form, e-ticket, off-line web site



### Gonzalez Lopez, CERN

# **INDICO AGGREGATOR**

Crawling HEP Conf Sources

One site, many sources

Upcoming conferences

Nearby, Favourites,...



### Gonzalez Lopez, CERN

# **GLOBAL INDICO SERVICE**

New service No restrictions Open to the whole research **world** Hosted by IT department at CERN Benefit from effort on scalability, virtualization



# Vidyo for the LHC (Thomas Baron, CERN)

- In production since December 2011
- Strong points for CERN
  - Multiplatform capabilities
    - Not only desktops but extension to mobiles and tablets
  - Integration with H323/SIP protocols
  - Extensible (several hundreds in a single meeting)
  - Natural interactions
    - very low latency and excellent lip sync
  - Good A/V quality and resilience/adaptability to poor network conditions
  - Simple interface
  - Good integration possibilities



### Baron, CERN

### CERN Vidyo Service Scale

- 18000 users
- 800-1600 simultaneous connections
- Up to 168 simultaneous H323/SIP
- 11 Phone access points worldwide
- 12 simultaneous recordings
- 2 VidyoPanoramas (CERN site)



















scientific impact and social perception of physics computing M. G. Pia<sup>1</sup>, T. Basaglia<sup>2</sup>, Z. W. Bell<sup>3</sup>, P. V. Dressendorfer<sup>4</sup>



<sup>1</sup>INFN Genova, Genova, Italy <sup>2</sup>CERN, Geneva, Switzerland <sup>3</sup>ORNL, Oak Ridge, TN, USA <sup>4</sup>IEEE, Piscataway, NJ, USA



**IEEE NSS 2013** Seoul, Korea



### Pia / INFN Genova

#### Conclusions

"You have to shout to be heard when it comes to getting science into the media and people to listen," said Professor Lythgoe. THE TIMES

Hannah Devlin Science Editor Published at 12:01AM, June 7 2013

How loud to get HEP software into the media and HEP management to listen?





Setting up collaborative tools for a 1000member community (Dirk Hoffmann, CPPM)

- Cta: Collaboration without support of a strong institute
- Had to set up basic services themselve



### Hoffmann, CPPM

CTA member administration and collaborative workflows implemented on four (principal) feet: <u>SharePoint2010 – InDiCo – Mailman + LDAP</u>

Summary

- InDiCo still without alternative
- Good universal "group registry" not for free
- SharePoint is expensive, but valuable framework, if costs are shared (a bit like Oracle).
  - Work (temporary staff, trainee) on ShPt highly qualifying
    - Standard tools and options satisfactory for most cases
  - Development and interoperability not easy, but feasible

### Final Words from Track 6

#### THANK YOU

- to all speakers and poster presenters for many interesting contributions
- to all attendees to the repsions for their interest and for lively discussions
- to my fellow conveners for a smooth sailing of the track, and for their input to this summary
- to the organisers for a great CHEP 2013!

SEE YOU IN ...

