GPU Enhancement of the Trigger to Extend Physics Reach at the LHC

(Poster #297)

V. Halyo, A. Hunt, P. Jindal, P. LeGresley, **P. Lujan**

Princeton University

Motivation

In CMS (similarly in ATLAS), tracks are reconstructed regionally using the **Combinatorial Track Finder** (CTF):

- Candidate trajectories are created from triplet seeds.
- The trajectory is then propagated to other layers, where compatible hits are searched for and attached.
- As the pileup (and thus the number of hits) rises, the number of possible combinations increases significantly.
- Due to CPU limitations, highly displaced tracks are not reconstructed in the CMS high-level trigger.
- We have studied a new algorithm which reconstructs tracks holistically, thus reducing the effects of pileup and enabling us to look for these displaced tracks.

New Physics Reach

 Many models predict signatures with leptons and/or jets produced at a vertex significantly displaced from the primary vertex.

A very distinct signal of potential new physics!

- Hidden valley models with long-lived neutrals
- Displaced black holes
- Boosted jets
- \circ RPV SUSY models with long-lived χ^0
- See arXiv:1308.6213
 (sub. to JHEP) for more

figure courtesy A. Zuranski

CMS simulation of a model with $H \rightarrow XX \rightarrow$ 4 jets, where X is a long-lived neutral boson

(CMS PAS EXO-12-038)

Hough Transform Algorithm

- Transforms hits in space to lines in parameter space; tracks are then the maxima in parameter space.
- Example with 500 curved tracks:

original simulated hits

parameter space (curvature & angle) after Hough transform

final reconstructed tracks (efficiency & purity both approx. 85%)

GPU Implementation

 Hough transform is a natural candidate for GPU acceleration using general-purpose GPU programming with CUDA.

Time vs. tracks per event, 2048x2048

See arXiv:1309.6275 for more on these implementations

CPU implementation before (open) and after (filled) optimization (performed on Intel Core i7-3770)

GPU implementation on Tesla C2075 (red) and K20c (black) –10-60x faster!

 Also a candidate for investigating with Xeon Phi

Displaced Vertices

- Vertices are also a valuable tool for finding displaced jets & black holes.
- After applying Hough transform once, apply it again to find intersections of tracks (i.e., vertices):

original simulated tracks (4 displaced jets)

parameter space after first Hough transform

after 2nd Hough transform, the four vertices are now visible!

Conclusions

- The Hough transform in conjunction with GPU computing is a very interesting alternative to the existing CTF:
 - We can reconstruct all tracks in a single step, helping to reduce the effects of increasing pileup.
 - We can extend the physics reach of the trigger by making it possible to search for models not practical with the current trigger.
- Currently working on building a more realistic detector model which could be integrated into the CMS framework.
- See our paper: JINST 8 P1005 (2013)
- Thanks for your votes!