

I Motivation

II Procedure for cooling muons

III MICE description

IV State Machine operation

V Future

I <u>Motivation</u>

II Procedure for cooling muons

III MICE description

IV State Machine operation

V Future

The goal of MICE is:

- Design, build, commission and operate a realistic section of muon cooling channel
- Measure its performance in a variety of modes of operation and beam conditions

Results to be used to optimize Neutrino Factory and Muon Collider designs.

17 October 2013

Motivation: Neutrino Factory

IDS-NF baseline design

Neutrino Factory: accelerate and store muons to produce neutrinos

High energy v_e are unique among future facilities.

 $V_e \rightarrow V_\mu$ long baseline oscillations manifested by wrong sign muons:

 $v_{\mu} + N \rightarrow \mu + X$

17 October 2013

Pierrick M. Hanlet

5 of 43

Motivation Muon Collider

Historically, we've fallen off the curve:

•µ accelerator solution fundamental particles cleaner interactions tunable interaction energy •μ lifetime: 2.2μs (rest frame) **Technological challenge**, but not impossible

Intermediate Higgs factory

17 October 2013

Motivation: Muon Accelerator

7 of 43

MICE is the

Muon onization Cooling Experiment **MICE** is a proof of principle experiment to demonstrate that we can "cool" a beam of muons.

Why cool muons?
muons are created as tertiary particles
created with large inherent emittance - beam spread in 6D phase space:
X, Y, Z
Px, Py, Pz

- accelerators require particles in tight bunches
- must "cool" muons reduce emittance of beam
 - "smaller beam" reduces cost of accelerator
 - "smaller beam" increases luminosity

17 October 2013

V I Motivation

II <u>Procedure for cooling muons</u>

III MICE description

IV State Machine operation

V Future

 Recall: μ's are created with large emittance
 "Cooling" muons refers to reducing the emittance of the muon beam.

•Conventional techniques won't work (too slow)

- •Due to short muon lifetime, the only viable option is ionization cooling. Must cool AND accelerate muons rapidly:
 - diagram vectors represent momentum
 - lose momentum in p_T and p_L
 - restore p_L

 Magnetic fields focus muons at absorber to reduce x & y where they lose momentum

17 October 2013

•es

Cooling is: •Momentum loss in all dimensions via dE/dx •Replace longitudinal momentum with RF

17 October 2013

MICE Procedure

- MICE will measure a 10% cooling effect with 1% accuracy => a 0.1% relative emittance measurement 1.create beam of muons
- 2.identify muons and reject background
- 3.measure muon emittance
- 4."cool" muons in low-Z absorber
- 5.restore longitudinal momentum
- 6.re-measure muon emittance
- 7.identify muons to reject e's from μ decay

17 October 2013

🖌 I Motivation

II Procedure for cooling muons

III <u>MICE description</u>

IV State Machine operation

V Future

Description: The Lab

United

Rutherford Appleton Laboratory

ISIS

MICE Hall R5.2

17 October 2013

ISIS Accelerator

ISIS Accelerator at RAL

Description: Experiment

Beamline - create beam of muons Particle ID - verify/tag muons (before/after) Trackers - measure emittance (before/after) Absorber (LH₂ or LiH) - cooling RF - re-establish longitudinal momentum

17 October 2013

Description: Who are MICE?

17 October 2013

Pierrick M. Hanlet

18 of 43

MICE Schedule

μ Beam Creation

 $\overline{\Box}$

μ

Selecting a muon beam

DK solenoid

20 of 43

Beam Selection

μ direction in π rest frame $p_{D1} ≈ p_{D2}$: beamline optimized for calibration studies and rate

$\begin{array}{l} p_{D1}\simeq 2p_{D2};\\ \mbox{beamline optimized for}\\ \pi \mbox{-----} \mu \ transmission \end{array}$

17 October 2013

Beam Preparation

Muon beam preparation for MICE measurements

vary p_{D1}/p_{D2} to select beam

p_{tgt}: p at target p_{sol}: p at DS p_{dif}: p at diffuser momentum (MeV/c)

	140	200	240
3	$p_{tgt}=321$	$p_{tgt}=390$	p _{tgt} =453
	$p_{sol}=185$	$p_{sol}=231$	p _{sol} =265
	$p_{dif}=151$	$p_{dif}=207$	p _{dif} =245
6	$p_{tgt}=328$	p _{tgt} =409	p _{tgt} =472
	$p_{sol}=189$	p _{sol} =238	p _{sol} =276
	$p_{dif}=148$	p _{dif} =215	p _{dif} =256
1 0	p _{tgt} =338 p _{sol} =195 p _{dif} =164	p _{tgt} =429 p _{sol} =251 p _{dif} =229	p _{tgt} =486 p _{sol} =285 p _{dif} =267

17 October 2013

Pierrick M. Hanlet

emittance

MICE PID: Detectors

<u>Upstream PID:</u> <u>discriminate p, π, μ</u> • Time of Flight - ToF0 & ToF1 • Threshold Cerenkov

17 October 2013

Downstream PID: reject decay electrons • Time of Flight - ToF2 • Kloe-light Calorimeter - KL

: Electron-Muon Ranger -EMR

MICE Cooling Channel

MICE Tracking

 Two trackers - before/after Measures x, y, x', y', z 5 stations/tracker •3 stereo planes/station - U/V/W •1400 350µm fibers/plane double layer, 7 fibers/group •<0.2% dead channels</p> •>10.5 photoelectrons/MIP •470µm RMS position resolution

17 October 2013

Pierrick M. Hanlet

CHEP'13 poster P2.19

Spectrometer Solenoids

4 T superconducting solenoids 20 cm warm bore 2.9 m long

•5 coils:
•1 tracker coil
•2 end coils
•2 matching coils

Absorber/Focus Coils

LH₂ Absorbers

Focus Coil 2 coils operated: •solenoid mode •flip mode

Pierrick M. Hanlet

ILLINOIS INSTITUTE

OF TECHNOLOGY

RF/Coupling Coils

201 MHz RF Cavity

Coupling Coil

17 October 2013

🖌 I Motivation

II Procedure for cooling muons

III MICE description

IV <u>State Machine operation</u>

V Future

17 October 2013

Framework: EPICS

Experimental Physics & Industrial Control Systems •HW+Drivers connect to IOCs (Input/Output Controllers) •IOCs create PVs (process variables) to represent params •PVs further described with native fields •PVs available on LAN to other IOCs or clients

17 October 2013

Framework: EPICS

Start

CC5

42.8

4.24 K

Trim2

-28.98 A

0.16 V

E2: 249.73 A

43.0 K

_ 0 ×

17 October 2013

Controls & Monitoring

•Beamline

- target
- decay solenoid
- conventional magnets
- proton absorber
- beam stop
- diffuser

Particle ID (PID)

- GVal
- ToF 1/2/3
- CKOV A/B
- KL
- EMR

Environment

• temp./humidity..

Facilities/Computing

Tracking Spectrometers spectrometer solenoids

• trackers

•AFC

- absorbers
- focusing coils
- •RFCC
 - RF (acceleration)
 - coupling coils

These magnets require:

- vacuum
- cryogenics
- power supplies

17 October 2013

 Different sub-systems have different needs •Each sub-system has 10¹-10³ PVs Many PVs have up to 4 alarm limits Each PV has different archiving needs For different operational states: - the PVs of interest change - the alarm limits change - the archiving needs change - the list of critical PVs change

Too much room for human error!

e.g. Powering a superconducting magnet

17 October 2013

Problem? No problem

EPICS state notation language employed:

- define equipment operational states
 for each state:
 - define transitions out of state
 - set alarm limits
 - set archiving features
 - define critical variables
- •check for software interlocks; e.g. quench
 •check for errors
- check for transition

All parameters come from configuration database (CDB) – ensures correct settings

17 October 2013

State Machine Requirements

Subsystem Owners must enumerate the states and provide:

1)Description of state 2)Transition into state 3)PVs of interest 4)Alarm limits for PVs 5)Archiving features for PVs 6)AutoSMS (auto dialer) flag 7)Hardware interlocks 8)Software "interlocks" (enables)

Required for each stateLoaded into the CDB

17 October 2013

State Machine Procedures

For each subsystem & state, the algorithm:

Transitions:
manual
automatic

17 October 2013

State Machine: SS Example

Spectrometer Solenoid Magnets: 1)Offline 2)Pumping: establish insulating vacuum 3)Pumped_Warm: insulating vacuum established 4)Pre_Cooling: N, pre-cooling (T>100K) 5)Cooling: cryo-coolers lower shield/cold mass T 6)LHe Filling: add liquid He 7)Cold Ready: cold and stable 8) Ramping: applying current 9)Powered: stable operation **10)Quenched: quench detected** 11)Error: error requires operator intervention 12)Testing: interlocks disabled for manual testing

Presently used in training/mapping SS magnets

17 October 2013

State Machine: Target Example

Target Example: 1)Offline 2)Parked_Powered 3)Raised_Holding 4)Raised_Actuating 5)Moving_Holding 6)Lowered_Holding 7)Lowered_Actuating 8)Error 9)Unknown

17 October 2013

Pierrick M. Hanlet

38 of 43

CHEP'13 poster P1.01

State machines for magnet control greatly reduces complexity of RunControl. RC need only check state of each magnet.

OF TECHNOLOGY

CDB

CDB

Comment

Comment

I Motivation

II Procedure for cooling muons

III MICE description

IV State Machine operation

V <u>Future</u>

MICE Next Steps

Now that Step I is complete:

Fill up this hall!!!

17 October 2013

Prepare for Step IV

Equipment is arriving:

More under test: •SS1 •FC for AFC •EMR

- MICE is a precision experiment: 0.1%
 MICE is preparing for Step IV
- C&M challenge to provide systematic operational settings
- State machine operation of major sub-systems meets this challenge

