# Implementation of a PC-based Level 0 Trigger Processor for the NA62 Experiment

A. Gianoli INFN - Sezione di Ferrara

# The NA62 experiment

A fixed target experiment precision kaon physics program at CERN

Ultra rare K decays K→πνν

How rare is it? 1 in 10<sup>10</sup>-10<sup>11</sup> particle decays

Aim to get O(100) events in 2-3 years



## The NA62 experiment

A fixed target experiment precision kaon physics program at CERN

Ultra rare K decays  $K \rightarrow \pi \nu \nu$ How rare is it? 1 in  $10^{10}$ - $10^{11}$  particle decays Aim to get O(100) events in 2-3 years

Very intense primary beam: 10<sup>13</sup> protons/s
Very intense secondary beam: 10<sup>9</sup> particles/s
Many (uninteresting) events: 10<sup>7</sup> decays/s

# The NA62 experiment



# Trigger/DAQ key requirements

- Ultra-rare decays
- Not limited by proton flux
- Reliability of vetoing power



- High trigger efficiency (>95%)
- Low random veto (<5%)</li>
- •High online time + double pulse resolution
- High data Bandwidth



- •DAQ reliability (undetected losses <10<sup>-8</sup>)
- Trigger reproducibility



- •Integrated Trigger + DAQ (40MHz common coherent clock)
- Completely digital data stream from FE to TDAQ
- Full monitored system (inefficiency and flow control recording)
- Uniformity for most subdetectors
- Custom hardware minimized: L0 hardware + L1/2 software
- Bandwidth scalability
- •Flexibility: higher intensities, additional physic channels, updgrades

#### Trigger/TDAQ overview



## LO Trigger Processor (LOTS)

#### Tasks:

- merge primitive lists (collect them via ethernet)
- re-synchronize L0 trigger to drive TTC
- provide trigger data for readout

#### Requirements:

- cut 10MHz→1MHz (up to 7 detectors, CHOD, MUV, LKR, RICH should suffice)
- fixed delay response (< 1ms)</li>

#### LOTS: how to do it?

#### Classical way

- custom module
- fpga based
- real-time

#### what we would like

- off the shelf components
- flexibility
- simplicity (to program and to maintain)

Do we really need real-time? Where?

#### LOTS: how to do it?

•use high performance PC to run selection algorithm

 use fpga board to handle fixed delay output to TTC (needs real-time)

 avoid memory-to-memory copy: use fpga board to collect primitives (udp packets) and put them into PC

ram

#### HW used:

- •core i7 920 2.67 GHz
- •core i7 3930K 3.2 GHz
- Terasic DE4-230 board (Altera StratixIV, PCIe Gen2 x8, 4 eth ports)



## Matching algorithm v 0.1

- Test computation requirements
- Dummy primitives already loaded in ram
- Primitives are time aligned
- Single "smart" trigger
- •Trigger condition:  $CHOD \land MUV \land LAV \land LKR \land RICH$



## Matching algorithm v 0.1



## Round Trip Time v 0.1

- Add the fpga (no net): fpga → cpu → fpga
- primitives are "time aligned"
- fpga adds "own" timestamp to data



#### RTT v 0.1



#### RTT v 0.1



## Matching algorithm v 0.9

- Primitives won't be time aligned: more sophisticated match
- "one" trigger is not enough: need at least 8

- more realistic primitives, not time aligned, "smart" trigger
  - average matching time: ~16 ns/event
- modify algorithm to accomodate more triggers
  - with 8 triggers: ~25 ns/event



### CPU-DE4 synchronization

- Problem arise with "not time aligned" primitives
- Tested two synchronization
- active polling
- credit buffer



#### RTT v0.9

#### polling





#### RTT v 0.9

#### credit buffer





#### Summary

- We are investigating the feasibility of a mixed PCfpga system as a L0 trigger
- Latencies and rates pose a challenge on several aspects
- Results are good, no fundamental show-stoppers
- The complete system will be ready for data-taking starting in 2014