

Integration of Cloud resources in the LHCb Distributed Computing

Mario Ubeda Garcia
(On behalf of the LHCb Offline team)

Secret of Beauty

Cloud .. LHCb Integration ..

Use cases

Possible solutions

Architecture

Related work

Next steps

- Cloud .. LHCb Integration ..
- There is a growing concern regarding the usage of new types of platforms...
- * ... and a growing number of providers!
 - > Some of them provide us with Grid resources, and asked to "give a try".
- * "When I see a bird that walks like a duck and swims like a duck and quacks like a duck, I call that bird a duck".
 - > The Grid is not anymore The Grid.
 - Grid, Cloud, Volunteer Computing, VAC, ...

❖ Idea of "Cloud Site":

- > virtual container for resources,
- > locality not necessarily a metric,
- > VO gains full control,
- > great power comes with great responsibility
 - reliability,
 - monitoring,
 - security.
- * We can do whatever we want.. So, what do we do?
 - > Integrate them with our current system,
 - > if possible, without touching a single line of code.

Besides the scope of this talk (UC-0), we have identified three major use cases for the Cloud resources ($UC-\{1..3\}$)

- ❖ UC-0: Cloud Sites.
- * UC-1: Playground (prototypes, future developments...).
- * UC-2: Continuous Integration testing.
- ❖ UC-3: LHCbDIRAC Server Infrastructure.

- * No big numbers. In contrast, very solid infrastructure.
- * Running on *Production* at:
 - > CERN (OpenStack):
 - CLOUD.CERN.ch,
 - CLOUD.CERNMP.ch.
 - > PIC (OpenNebula):
 - · CLOUD.PIC.es.
 - > RAL (StratusLab):
 - VERY SOON!
- ❖ Jobs we run:
 - > MC,
 - > Data processing.

Cloud Site	Count	RAM *	Disk *	V <i>C</i> PUs
CLOUD.CERN.ch	26	4	40	2
CLOUD.CERNMP.ch	4	8	80	4
CLOUD.PIC.es	75	2	10	1
∑Total	105	286	2.11K	143

* (GB)

Generated on 2013-10-11 06:05:45 UTC

- * Sometimes, we do not find what we need on The Grid:
 - > binaries (e.g. KSM requires to be supported),
 - > kernel (e.g. x32-ABI requires recompiling the kernel).
- * Proud to show N. Rauschmayr's work on memory footprint reduction with GaudiMP:
 - Preparing the Gaudi-Framework and the DIRAC-WMS for Multicore Job Submission (CHEP'13; Id50).
- Soon on your favorite multicore Cloud Sites.

UC-2: Continuous Integration testing

- * QA, Unit, Regression, Integration and System tests.
- * Extremely handy validating SW on different OS/SW.
- * At the moment:
 - > Master LHCb Jenkins Server (S.Lohn et al):
 - Systematic profiling to monitor and specify the software refactoring process of the LHCb experiment (CHEP'13; Id339).
 - > (virtual) slaves with multiple OS/SW configurations to test and certify our Grid middleware.

Type of test	Count	RAM *	Disk *	V <i>C</i> PUs
Regression, Integration & System	3	4	40	2
QA, Unit	1	8	80	4

Try it out, works like a dream!

UC-3: LHCbDIRAC Server Infrastructure

* At the moment:

- > resources:
 - 10 machines at CERN,
 - 6 machines distributed among our T1s.
- > components (some of them replicated):
 - ~40 different services,
 - ~40 different agents,
 - ~20 MySQL DBs & 1 Oracle DB.
- > (components / resources) ratio higher than desirable,
 - when a machine goes wrong, many services will stop working.
- Our infrastructure allows us to hop from physical to virtual machines without disruption of service:
 - > MySQL DBs to be moved to MySQL On Demand service at CERN.
 - > Components isolation, regrouping by functions, increase availability, horizontal scalability and (finally) fully distributed.

Solutions we considered for UC-0 (and UC-1). UC-2 and UC-3 profited from the *Agile Infrastructure* at CERN.

* PS-2: IaaS and Cloud Sites.

❖ PS-3: Goodies and more.

- * Registry: metadata service (lifetime, configuration, status, etc...).
 - > Notebook, provider registries, custom DB,
 - > VMDIRAC.
- Scheduler: interaction with the IaaS on behalf of the VO (quotas, VM initialization, termination, etc...).
 - > Manual submission, cronjob,
 - > VMDIRAC.
- * Accounting: job monitoring.
 - > DIRAC.
- * Configuration: IaaS metadata (endpoints, authentication, flavors, images, etc...).
 - > DIRAC,
 - >-none,
 - > ¿ BDII ?.

PS-2: Iaas & Cloud Sites

* Image store:

- > i any ?,
- > none.
- ***** 05:
 - >-SLC*,
 - > CernVM, ¿ µCernVM?,
 - > Others (Fedora, CentOS)

SW distribution:

- > tarballs,
- > AFS,
- > CVMFS.
 - ¿ Local proxies ?.

Security:

- > ¿ AAA ?,
 - ¿ Credentials ?.
- > ¿ logging?.

* Monitoring:

- VMs:
 - Ganglia,
 - Lemon,
 - VMDIRAC.

IaaS providers:

- · ¿GocDB?,
- e-mail, IT status board,
- ¿ Self managing experiment resources (CHEP'13; Id85)?

* Contextualization:

- > Amiconfig,
- Cloud-init.

PS-3: Goodies and more

- * VMs lifetime (see Scheduler):
 - > run forever,
 - > load based.
 - > credit based,
 - > ¿ let us know politely we should stop?
- * Web portal:
 - > Horizon,
 - > Sunstone,
 - > VMDIRAC.
- ❖ API:
 - > DIRAC.
- * Grant IaaS providers access to monitoring.

Architecture: Core

Architecture: IaaS

Architecture: Cloud Site with WNs

Architecture: Full Cloud Site with WNs

Architecture: Goodies and more

Architecture: Next steps

* Merging developments:

- > Volunteer Computing.
- > CVMFS based SW for Grid Jobs:
 - applications,
 - middleware.
 - See F. Stagni at pre-GDB (9 July).
- > x32-ABI & KSM
 - Evaluation of x32-ABI in the context of LHC applications (ICCS'13).
 - Reducing the memory footprint of parallel applications with KSM (Facing the multicore challenge III'12).

Other activities:

> Running Jobs in the Vacuum (CHEP-2013; Id119).

Related Work: Volunteer Computing

- * Thanks B. Cabarrou for your CPU Cycles!
- ❖ If you want to play:
 - > http://lhcbathome.web.cern.ch/Beauty

- Ihcb-boinc@cern.ch
- Different contributions
 - > BOINC sites:
 - Building 2 @ CERN,
 - University Student Labs @ summer.
 - > Single users.
 - There are power users!

lobs by Site

Do you leave your desktop ON during the night? know how many desktops are there at CERN? at the collaboration's universities?

* Short term (gather data & statistics):

- > more IaaS providers,
- > read VM monitoring information from Ganglia and feedback the Status System and Registry,
- > Run GaudiMP on Cloud sites.

* Medium term (infrastructure):

- > move to µCernVM,
- > i outages announced via GocDB?,
- > automatic IaaS discovery (¿ BDII ?),
- > proxy / certificate authentication,
- > stable metadata servers (already much better !).

* Long term:

- > Find bottlenecks and solve scalability issues,
- > MACHINE_FEATURES ?,
- > public vS floating IPs,
- > and much more!

If we put everything together...

...one could say we solved a problem.

Jobs Completed in the Cloud and BOINC (last month)

There are many questions...

we formulated ourselves after solving the problems described on this talk.

Are we:

Following a brute force approach

Imposing a flawed model?

Missing the point?

Being unrealistic?

We believe some answers can be found on Cloud Federation and Cross Experiment Services.

For your time and attention!

The LHCb Offline Team.

We do not forget:

LHCb collaboration for being our guinea pigs testing the BOINC.

OpenStack@CERN and OpenNebula@PIC for their help and patience.

Test4Theory group for their advices and guidance.

Architecture: Full Picture (WNs)

