DD4hep

HEP detector description supporting the full experiment life cycle

M.Frank⁽¹⁾, F.Gaede⁽²⁾, P.Mato⁽¹⁾

⁽¹⁾CERN, 1211 Geneva 23, Switzerland ⁽²⁾Desy, 22607 Hamburg, Germany

October 15th 2013

iLCc

Aft.

Markus Frank CERN/LHCb CHEP2013, Amsterdam, October 14th–18th 2013

Motivation and Goals

TIN

- Concepts and Design
- Implementation
- Simulation

CHEP '13

Summary

Motivation and Goal

- Develop a detector description
 - For the full experiment life cycle
 - detector concept development, optimization
 - detector construction and operation
 - "Anticipate the unforeseen"
 - Consistent description, with single data source
 - Support for simulation, reconstruction, analysis
 - Full description, including
 - Geometry, readout, alignment, calibration etc.
 - + standard commercials apply: simple usage etc.
 - Part of AIDA project: WP2 Common Software Tools (EU FP7 Research Infrastructures, grant no 262025)

What is Detector Description ?

- Description of a tree-like hierarchy of 'detector elements'
 - A subdetector or parts of thereof

Example (ILD): - Experiment - TPC - Endcap A/B - Sector

CHEP 13

Markus Frank CERN/LHCb CHEP2013, Amsterdam, October 14th–18th 2013

-/

What is a Detector Element?

Describes a significant piece of a sub-detector including its state

- Geometry

HEP 13

- Environmental conditions
- All properties required to fully interpret data from particle collisions

Motivation and Goals

A BAR

- Concepts and Design
- Implementation
- Simulation
- Summary

CHEP 13

DD4Hep - The Big Picture

October 15th 2013

CHEP 13

Markus Frank CERN/LHCb CHEP2013, Amsterdam, October 14th–18th 2013

7

Compact Description – XML

- Human readable
- Extensible
- Interpreter supports
 units and formulas
- Parsed by DD4hep core

```
<detector id="9" name="Coil"

    type="Tesla_coil00"

    vis="CoilVis">

<coil

    inner_r="Hcal_R_max+

        Hcal_Coil_additional_gap"

    outer_r="Hcal_R_max+

        Hcal_Coil_additional_gap+

        Coil_thickness"

    zhalf="TPC_Ecal_Hcal_barrel_halfZ+

        Coil_extra_size"

    material="Aluminum">

    </coil>

</detector>
```

Requires interpreting code to create 'detectors'

Markus Frank CERN/LHCb CHEP2013, Amsterdam, October 14th–18th 2013

DD4Hep – Detector Constructors (C++)

<pre>static Ref_t</pre>	<pre>create_element(LCDD& lcdd, const xml_h&</pre>	🛿 e, SensitiveDetector& sens) {
xml_det_t	x_det = e;	
string DetElement	<pre>name = x_det.nameStr(); sdet(name,x_det.id());</pre>	1) Create Detector Element
Assembly xml comp t	<pre>assembly(name); x coil = x det.child(Unicode("coil"));</pre>	2) Create envelope

Tube coilTub(x_coil.inner_r(),x_coil.outer_r(),x_coil.zhalf()); Volume coilVol("coil",coilTub,lcdd.material(x_coil.materialStr())); coilVol.setVisAttributes(lcdd.visAttributes(x_det.visStr()));
3) Create volume: Shape of given Material
4) Place volume in envelope

PlacedVolume pv=lcdd.pickMotherVolume(sdet).placeVolume(assembly);
sdet.setPlacement(pv);
return sdet;
5) Place envelope

DECLARE_DETELEMENT(Tesla_coil00,create_element);

- 6) Publish constructor
- More complex DetElements are tree-like
- recurse steps 3,4 to describe inner structures

Markus Frank CERN/LHCb CHEP2013, Amsterdam, October 14th–18th 2013

Display options

â îp

Display using native ROOT

CHEP 13

OpenGL, Eve, etc.

Motivation and Goals

A DE

- Concepts and Design
- Implementation
- Simulation
- Summary

CHEP 13

Implementation: Design Choices

- Detectors are described by a compact notation
 - Inspired by SiD compact description [Jeremy McCormick]
 - Flexible and extensible
- C++ model separation of 'data' and 'behavior'
 - Classes consist of a single 'reference' to the data object
 - Same 'data' can be associated to different 'behaviors'
- Implementation based on TGeo (ROOT)
 - TGeo classes directly accessible (no hiding)
 - TGeo has support for alignment

Implementation: Geometry

CHEP 13

Deal with the Unforeseeable

- Use case: The use of the geometry is different in track reconstruction and alignment
 => specialized 'behavior' required
- Object functionality is achieved by 'views' of public data describing a detector element
 - Consequence of separation of 'data' and 'behavior'
 - Many different views share the same data
 - Support specialized behavior
 - User objects may be attached to data (extensions)
 - Views are 'handles': Creation is efficient and fast
 - View for Convenience, Compatibility and Optimization

Motivation and Goals

MA

- Concepts and Design
- Implementation
- Simulation
- Summary

CHEP 13

Simulation: Ongoing Work for LC

October 15th 2013

CHEP 13

Markus Frank CERN/LHCb CHEP2013, Amsterdam, October 14th–18th 2013

Geant 4 Gateway: In Memory

- Basic Idea:
 - walk through the geometry starting from "world"
 - convert the geometry from ROOT to Geant4
 - all runs by magic
 - **Convert full geometry while walking from TGeo automatically to Geant4**
 - Materials, Solids, Limit sets, Regions
 - Logical volumes, placed volumes / physical volumes
 - Fields
 - Sensitive detectors

In Memory Translation to Geant 4

- This processing chain was implemented
- Geant4 Sensitive Detectors are not provided
 - Couples detector 'construction' to reconstruction, MC truth and Hit production
 - Highly dependent on technology of the sensitive elements
 - Palette of most common sensitive components will be provided – but cannot serve specific needs
- Ongoing work
 - Development for 'generic' framework
 - Investigations to 'reuse' existing SD (LC community)

MAR

- Concepts and Design
- Implementation
- Summary

CHEP '13

Summary

- DD4Hep is a generic tool able support any HEP experiment not (yet) perfect though
- Supports functionality for the detector design phase
- Work to support simulation and reconstruction for linear collider detectors ongoing
- Missing functionality to be addressed
 - needed for mature experiments
 - Alignment
 - Connection to conditions

http://aidasoft.web.cern.ch/DD4hep

Simulation: Ongoing Work for LC

CHEP 13

Markus Frank CERN/LHCb CHEP2013, Amsterdam, October 14th-18th 2013

Geant 4 Gateway

- CERN/LCD follow suggestion to benefit from 'slic' (SiD) as simulation framework
 - Convert DD4hep geometry to LCDD notation (xml)
 - Materials, Solids, Limit sets, Regions
 - Logical volumes, Placed volumes / physical volumes
 - Fields
 - Sensitive detector information
- Collaboration with SiD/SLAC (N.Graf, J.McCormick)
- Model is working