The "Last Mile" of Data Handling

Marc Mengel & Adam Lyon

Fermilab Scientific Computing Division

CHEP October 2013

Traditional Last Mile

The Last Mile is a common problem

Land line telephone, power, cable TV & internet

Last mile is expensive and hard to upgrade

Our context - Moving files to jobs

FIFE is Fermilab's overarching program of common tools and systems for scientific data processing

FIFE (Fabrlc for Frontier Experiments)

FIFE is Fermilab's overarching program of common tools and systems for scientific data processing

Why is data movement difficult?

Your FILES don't reside where your jobs run

Your files reside here

Not here, where you need them

Compute Farm of worker nodes

Files must be moved to where a worker node can access them with <u>efficiency and</u> <u>scalability</u>

Output files must be returned from worker node

NOT a simple process, especially the <u>efficiency and scalability</u> part!

CHEP 2013 - Lyon

Our last mile problem

We must handle many file types

Data handling in lots of boxes

— Our last mile

Early days

Early days

Intermediate

Intermediate; need batch

Intermediate; need more batch

scale problems!

Scale problems begin e.g. Uncontrolled Bluearc

Good news: When used as designed, it works great

Bad news: Can't handle concentrated access

Growing up to real data management

Solution for the last mile - IFDH

IFDH Thin Layer for Data Movement

Automatic protocol discovery or specify with environment var

Protocols supported: cp (throttled), srm, gridftp, xrootd (near future)

Users need not worry about protocol

Users' job scripts use ifdh for transfers - simple

while read sourcefile

do

ifdh cp \$sourcefile localsource
 framework_exe -c config localsource localout
 ifdh cp localout \$outarea
 done < playlist</pre>

With a data handling system

while uri=`ifdh getNextFile \$projectUrl` && [-n "\$uri"]
do
 localsource = `ifdh fetchInput \$uri`
 framework_exe -c config \$localsource localout
 ifdh cp localout \$outarea
done

With an integrated framework

framework_exe -c config --samProjectUrl \$projectUrl -o \$outarea ifdh copyBackOutput \$myOutArea \$outarea

Protect the central storage

ifdh cp to central storage is throttled by a system called "CPN"

Allows n simultaneous transfers per experiment to Bluearc

Transfers exceeding are queued

The challenge is to ensure that <u>all</u> users utilize CPN.

ifdh cp makes that easy

Harder part – transferring output back home

Benefits of the thin abstraction

- Users are shielded from details of protocol choice
- We can change the protocols and decision algorithms without breaking the user's scripts
- Shipped to remote sites with CVMFS (but small, can be shipped with job)
- Other features: o Tools to define and view SAM data-sets o Tools to locate files on tape or in cache o Logging over UDP to monitoring services o Supports many languages: C++, Python, Bash

Examples

C++

#include "ifdh.h"
ifdh i();
location = i.locateFile(base_uri, filename);

Python

import ifdh
i = ifdh.ifdh()
location = i.locateFile(base_uri, filename)

Bash shell

location = `ifdh localFile \$base_uri \$filename`

Easy to add more since we use SWIG

Experience

Very successful for local FermiGrid, Bluearc and remote sites o Greatly reduced Bluearc downtime due to overloads o NOvA experiment doing MC generation with SAM and ifdh remotely Configuration file retrieved by SAM/ifdh; output returned by ifdh

Plans & Summary

Future: o Explore other protocols as necessary o Settle on file return feature and discovery

Summary: IFDH is a swiss-army knife of tools for data movement abstraction and protocol selection for <u>the last mile</u>

Users learn one simple system – shielded from details

Details can be changed without affecting users

IFDH is an integral part of our data management solution