The “Last Mile” of Data Handling

Marc Mengel & Adam Lyon

Fermilab Scientific Computing Division

CHEP October 2013
Traditional Last Mile

The Last Mile is a common problem

Land line telephone, power, cable TV & internet

Last mile is expensive and hard to upgrade
Our context - Moving files to jobs

FIFE is Fermilab’s overarching program of common tools and systems for scientific data processing.

Rolling out to Minerva, NOvA, Muon g-2, Mu2e, LBNE, Microboone, Argoneut, DS50

Happy Physicist
FIFE (Fabric for Frontier Experiments)

FIFE is Fermilab’s overarching program of common tools and systems for scientific data processing.

Rolling out to Minerva, NOvA, Muon g-2, Mu2e, LBNE, Microboone, Argonneut, DS50
Why is data movement difficult?

Your FILES don’t reside where your jobs run

Your files reside here

| Tape Robot | Disk Storage |

Not here, where you need them

Compute Farm of worker nodes

Files must be moved to where a worker node can access them with **efficiency and scalability**

Output files must be returned from worker node

NOT a simple process, especially the **efficiency and scalability** part!
Our last mile problem

Our problem is not bandwidth, but protocol.

Tape @ FNAL

dCache @ FNAL

Nearby SE

Worker Node

Worker Node

Worker Node

Worker Node

Offsite

Fermigrid

srmcp, gridftp, cp, xrootd?

srmcp, gridftp, cp, xrootd?
We must handle many file types

- Input Event Data Files
- Large Auxiliary Files
 (Geometry, particle libraries, calibrations not in DB, overlay files)
 [handle like event data files]
- Application and smaller auxiliary files
 [won’t discuss]
- Output files
 - Database (calibrations, constants)
 [won’t discuss]
- Local Storage on node

Worker Node
Data handling in lots of boxes

- Tape
- Cache
- Nearby cache
- Local Storage on node
- Worker Node
- Application code
- Possibly Offsite
- Application code source
- Upload dropbox
- Project storage
- Host site (e.g. Fermilab)

Data input/output with SAM

... to and from worker

Application Code and Auxiliary files
The last mile evolves

Central Storage (NFS)

Interactive Nodes

Early days
The last mile evolves

Early days

Intermediate
The last mile evolves

Early days

Intermediate; need batch
The last mile evolves

Early days

Central Storage (NFS)

Interactive Nodes

Intermediate; need more batch

Central Storage (NFS)

Interactive Nodes

Batch Nodes

Interactive Nodes

Central Storage (NFS)
The last mile evolves

Early days

Intermediate; uh oh scale problems!
The last mile evolves

Early days

Intermediate; uh oh scale problems!
Scale problems begin e.g. Uncontrolled Bluearc

Good news: When used as designed, it works great

Bad news: Can’t handle concentrated access

Batch jobs do this!
Growing up to real data management

- Tape @ FNAL
- dCache @ FNAL
- Nearby SE

SAM transfer

- Our last mile

srmcp, gridftp, cp, xrootd?

Offsite
Worker Node
Worker Node

Fermigrid
Worker Node
Worker Node
Solution for the last mile - IFDH
Automatic protocol discovery or specify with environment var

Protocols supported: cp (throttled), srm, gridftp, xrootd (near future)
Users need not worry about protocol

Users’ job scripts use ifdh for transfers - simple

```
while read sourcefile
  do
    ifdh cp $sourcefile localsource
    framework_exe -c config localsource localout
    ifdh cp localout $outarea
  done < playlist
```

With a data handling system

```
while uri=`ifdh getNextFile $projectUrl` && [-n "$uri"]
  do
    localsource = `ifdh fetchInput $uri`
    framework_exe -c config $localsource localout
    ifdh cp localout $outarea
  done
```

With an integrated framework

```
framework_exe -c config --samProjectUrl $projectUrl -o $outarea
ifdh copyBackOutput $myOutArea $outarea
```
Protect the central storage

`ifdh cp` to central storage is throttled by a system called “CPN”

Allows n simultaneous transfers per experiment to Bluearc

Transfers exceeding are queued

The challenge is to ensure that all users utilize CPN.

`ifdh cp` makes that easy
Harder part – transferring output back home

Direct

Fermilab

dropbox

Worker Node

Direct via SRM

Fermilab

Best man

srm

Offsite

Worker Node

3rd party SRM

Fermilab

dropbox

Best man

srm

Storage Element

Offsite

Worker Node
Benefits of the thin abstraction

Users are shielded from details of protocol choice

We can change the protocols and decision algorithms without breaking the user’s scripts

Shipped to remote sites with CVMFS (but small, can be shipped with job)

Other features:
- Tools to define and view SAM data-sets
- Tools to locate files on tape or in cache
- Logging over UDP to monitoring services
- Supports many languages: C++, Python, Bash
Examples

C++
#include "ifdh.h"
ifdh i();
location = i.locateFile(base_uri, filename);

Python
import ifdh
i = ifdh.ifdh()
location = i.locateFile(base_uri, filename)

Bash shell
location = `ifdh localFile $base_uri $filename`

Easy to add more since we use SWIG
Experience

Very successful for local FermiGrid, Bluearc and remote sites
 o Greatly reduced Bluearc downtime due to overloads
 o NOvA experiment doing MC generation with SAM and ifdh remotely

Configuration file retrieved by SAM/ifdh; output returned by ifdh
Plans & Summary

Future:
- Explore other protocols as necessary
- Settle on file return feature and discovery

Summary:
IFDH is a swiss-army knife of tools for data movement abstraction and protocol selection for the last mile

Users learn one simple system – shielded from details

Details can be changed without affecting users

IFDH is an integral part of our data management solution