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Abstract

The STAR experiment pursues a broad range of physics topics in pp, pA and AA collisions produced by the Relativistic Heavy lon Collider (RHIC). Such a diverse experimental program demands a simulation
framework capable of supporting an equally diverse set of event generators, and a flexible event record capable of storing the (common) particle-wise and (varied) event-wise information provided by the external
generators. With planning underway for the next round of upgrades to exploit ep and eA collisions from the electron-ion collider (or eRHIC), these demands on the simulation infrastructure will only increase and
requires a versatile framework.

STAR has developed a new event-generator framework based on the best practices in the community (a survey of existing approach had been made and the “best of all worlds” kept in mind in our design). It
provides a common set of base classes which establish the interface between event generators and the simulation and handles most of the bookkeeping associated with a simulation run. This streamlines the
process of integrating and configuring an event generator within our software chain. Developers implement two classes: the interface for their event generator, and their event record. They only need to loop over
all particles in their event and push them out into the event record. The framework is responsible for vertex assignment, stacking the particles out for simulation, and event persistency. Events from multiple
generators can be merged together seamlessly, with an event record which is capable of tracing each particle back to its parent generator. We present our work and approach in detail and illustrate its

usefulness by providing examples of event generators implemented within the STAR framework covering for very diverse physics topics. We will also discuss support for event filtering, allowing users to prune the
event record of particles which are outside of our acceptance, and/or abort events prior to the more computationally expensive digitization and reconstruction phases. Event filtering has been supported in the
previous framework and showed to save enormous amount of resources — the approach within the new framework is a generalization of filtering.
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Status code -201 denotes a bookkeeping entry representing a new event generator.

Summary and Conclusion

Filtering

High energy physics cross sections feature dramatic
variations in scale, for example falling many orders of
magnitude within the transverse momentum range
measured at STAR. Comprehensive sampling of these
cross sections becomes prohibitively expensive:

the majority of computational resources are expended
drawing events from low pT. The majority of these events
will be discarded by offline analysis as they try to compare
the simulated data samples with real data,with high-pT
thresholds imposed by the online trigger.

The STAR experiment at Brookhaven National Lab continues to pursue a rich and
diverse experimental program utilizing the Relativistic Heavy lon Collider. To better
support these programs, and with the plans for eSTAR at eRHIC in mind, we have
developed a new framework for event generation which

 Leverages our existing simulation package and
e Lays the groundwork for the development of a new virtual MC application
 Establishes a simple, well-defined interface between event generators and the STAR

L . software stack
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void Abort() the event record, geant hits and/or simulated trigger response.
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