The STAR “Plug and Play” Event Generator Framework

J. Webb, J.Novak, J. Lauret, V. Perevoztchikov

Abstract

The STAR experiment pursues a broad range of physics topics in pp, pA and AA collisions produced by the Relativistic Heavy lon Collider (RHIC). Such a diverse experimental program demands a simulation
framework capable of supporting an equally diverse set of event generators, and a flexible event record capable of storing the (common) particle-wise and (varied) event-wise information provided by the external
generators. With planning underway for the next round of upgrades to exploit ep and eA collisions from the electron-ion collider (or eRHIC), these demands on the simulation infrastructure will only increase and
requires a versatile framework.

STAR has developed a new event-generator framework based on the best practices in the community (a survey of existing approach had been made and the “best of all worlds” kept in mind in our design). It
provides a common set of base classes which establish the interface between event generators and the simulation and handles most of the bookkeeping associated with a simulation run. This streamlines the
process of integrating and configuring an event generator within our software chain. Developers implement two classes: the interface for their event generator, and their event record. They only need to loop over
all particles in their event and push them out into the event record. The framework is responsible for vertex assignment, stacking the particles out for simulation, and event persistency. Events from multiple
generators can be merged together seamlessly, with an event record which is capable of tracing each particle back to its parent generator. We present our work and approach in detail and illustrate its

usefulness by providing examples of event generators implemented within the STAR framework covering for very diverse physics topics. We will also discuss support for event filtering, allowing users to prune the
event record of particles which are outside of our acceptance, and/or abort events prior to the more computationally expensive digitization and reconstruction phases. Event filtering has been supported in the
previous framework and showed to save enormous amount of resources — the approach within the new framework is a generalization of filtering.

Design Goals StarGenerator
Design goals were developed after analyzing our existing framework, | "
studying use cases in STAR and anticipated for eSTAR, and surveying T StarGenerator
2) Y StarGenerator : :
existing frameworks from Alice, Atlas, CMS, and FairRoot,and | | oA - e] Set vertex and siam StarGenerator defines the interface be_tween event generators
considering the HepMC event record. verox B e and the STAR framework. In order to integrate a new concrete
""""""""" /Il Initialize event generator, developers only need to implement one class
(1) Provide a streamlined framework in which developers can };}'tF())r;pgres (o the next event which inherits from this abstract base class. In general, this
- : - i i - the developer must
integrate their event generators using a minimum number of public Clear() =0 means
clearly documented base classes. Geniraie%efge 1) Impl ¢ set methods t : h ¢ ¢
b, eSTAR Letter of Intent /Il User code executed before event mpiement set metnods 1o configure the event generator,
: - « ” e Pythia event virtual PreEvent(){ } allowing the generator to be steered from w/in an interactive
(2) Present end-users with a single-pass “plug-and-play” framework. Users add the generator to IIi User code executer post event _
their chain, configure it through a uniform interface, and run their simulation in a single pass. virtual PostEven)(} ROOT session or macro.
Support adding event generators to our embedding framework for, e.g., adding simulations private PreGenerate() 2) Implement the Init() method to configure the concrete
on top of zero- or minimume-bias triggered data. Jl riook o handie F’tof)tE"e”t event generator
. . private PostGenerate
3) L sting STAR infrastruct Ntaini for starsi STAR'S | Simulation Workflow //ﬁi\'j:tgkégn“;g?é%\?;f;gfate 3) Implement the Generate() method to exercise the event
(3) Leverage existing STAR infrastructure, maintaining support for starsim — > legacy P generation machinery within the concrete event generator
(FORtran) MC application — while establishing the basis for the development of the starvmc 1] Sets the frame of the interaction _ _ _
virtual Monte Carlo application. SetFrame(fim="CMS" , ene=510) 4) Provide code to fill the various supported event types
/Il Sets the particles in RHIC's “blue” (pp, ep, AA and eA)
/Il and “yellow” beams
(4) Implement persistent event records which stores particle information from the event generator, g:ﬁéﬁ(2?{5“9”)) 5) Push particles out into the event record
and provides a uniform treatment of event-wise data (e.g. parton-level kinematics) for the cases I/l Sets tﬁe im;’act parameter — translate concrete event generator particle ID codes
of polarized pp, ep, pA, and AA collisions. Users should be able to analyze the persistent ROOT Setimpact(min, max) and status codes into the PDG and HepMC standards
files w/out loading in additional libraries. 1 Fils various event record types 6) Create the interface between the event generator class and
. . . . StarGenEvent *mEvent; the concrete event generator. In the case of FORtran event
(5) Permit end-users to mix results from multiple event generators, replay events stored in ROOT ven: d :
i di icle lists bef tack P ficl gtf : I’ i piay generators, this will involve exposing the common blocks and
iles, modify particle lists before stacking particles out for simulation. subroutines to C++.
(6) Provide the same capabilities for event filtering currently present in starsim.
: : Run one or more - Event-Wise Data
Primar
DeS|gn Overview generators and merge Generat);r i
event records
tarGengvent StarGenEvent — the Event Record
The design which we settled on is based around three main classes which will be ebtic. + Provides persistence for generated particles
run in the STAR Big Full Chain. Trotarray - meimulateq o cenartiele « Maintains a list of particles which are stacked out
Does the event paSS a int mEventNumber for SimU|ati0n
- i . No : b _) i
StarPrimaryGenerator user-defined filter? b Keeps track of common event-wise information,
* Interface to the STAR Big Full Chain — steers simulation int meeneratortd = such as event number, run number, etc...
» Aggregates particles from user's event records Yes gggbiﬁRgggiiggEgg)/ total, eq, Filt e Optimized for ROOT 1/O... particle class avoids the
« Handles bookkeeping, i.e. keeps track of which generated o * "backwards pointer” problems of HepMC
particle corresponds to which particle in the geant stack Stack the particles for it eitereesule o) Ezugaflzefgaf%?f;gr;mi/ ﬁg;ﬁﬁt;ti%%’se& tﬁé and
» Pushes particles out to the geant stack for simulation simulation. GEANT o event recof 4 P
public: | » Developers can further customize for specific
StarGenerator rarcenevent(); generators
» Abstract Base Class which developers use to implement
their interface to the concrete event generator Do the geant hits pass a
* Establishes a common set of methods for base configuration of event generators user-defined filter? No
. . . i d
SetFrame() // The InteraCtlc.)n frame o ., . int mPartonId[2] int mNucleonId[2] :]IEE miggzggid int mNucleonId
e SetBlue (...) //ID of the particle in RHIC's “blue” beamline double mX[2] int mNPartProt[2] double mX int mNPartProt
.) D "] double mxPDF[2] int mNPartNeut[2] double mxPDF int mNPartNeut
« SetYellow(...) //'ID of the particle in RHIC's “yellow” beamline Yes double mpt int mNWounded[2] double mPt int mNWounded
int mNBinary double mCosTheta int mNBinary
ggﬂgig mgﬁiTheta double mImpactParam gougie mPhi] double mImpactParam
. s double mImpactPhi ouble mRapidity //?double mImpactPhi
Digitize hits in trigger Trigger double mRapidity int mNumJet double mQ2 int mNumJets
-Ségggggsi\:grnetven record detectors. Simt?lgtion ot e S double mie T
* Provides list of generated particles, list of stable particles stacked for simulation
* Provides event-wise information, e.g. process ID, event kinematics, etc...
Do the simulated hits in Particle-Wise Data
trigger detectors pass a No
. “defined filter?
StarPrlmaryGenerator user-defined filter: StarGenParticle provides a lightweight particle class orivate:
Yes which is essentially a facade to the well-established HEPEVT Int metatus, ompatible data block
standard, with support added for merging events from multiple e [2],
StarPrimaryGenerator : : : : : : int mDatahterisl:
e e e StarPrimaryGenerator inherits from StMaker, the class which - Proceed with the time- TPC generators. Float ns, mpy. Pz
Add(StarGenerator*) executes and organizes“tasks” within the STAR framework. Itis consuming portions of . : float mEnergy, mMass;
Vertoxtuah sfay o sloma responsible for steering the entire event-generation process the chain Simulation Below is a simplified printout of an event record from a pythia 8 | o2t mvx. mvy, mvz;
ertex(v[3], s) g . ! . : i ; i : : void * hepev return &m ;
I Initialize accumulating particles from all event-generators, pushing them single-diffractive simulation at 510 GeV CMS, with a toy P Tet-hepevtL return dnstatus;)
I e event out to the Monte Carlo particle stack, creating the persistent i event generator adding muons to it. mKey is a unique ID {nt mindex; o TipLe generators
Make() record of the event. Support for rejecting particles based on user- assigned to every particle. mindex tracks the order in which int mstack;
o e for the next event defined filter conditions is also provided. each event generator added the particle. And mStack keeps it meey; pramary key
ear . . . ; .
- Full track of the order in which each particle was added to the int meeneratorid;
/Il Adds track to the particle stack _ _ _ i - - _
E/ri\éatf I’:hUShTr?C:((iotl, PX. Py P2,) The particle stack is derived from ROOT's TVirtuaMCStack interface Reconstruction GEANT stack. Highlighted in bold are two special particles P e and etters
ets the particle stac) -) - ' rs an r _
Stack(StarParticleStack *s) which will enable us to integrate our event generators into the STAR which are inserted to provide information about each generator. | setstatus(s); Getstatus(); etc. ..
/Il Accept/reject particle based on ; ; ; ; ;
1l user-provided cuts VMC application as the_prolect matures. The interface with our extant _
bool Accept(StarGenParticle *p) FORtran-based simulation package is provied by the AgStarReader mKey mndex mStack Particle Id Staus 4-momentum mass MOMS KIDS
1/ Set the filename for TTree 10 class. The STAR Primary Event generator is responsible for running the [o] o -1] 0 Rootino -201 (0.000, 0.000, 0.000, 0.000; 510.000) [0 0] [0 O]
SetFilename(name) concrete event generators and assembling the event record. The E %l (1): -H 1(3) rooti zgi E (1)-3(6)3, (2) : 8(1,8 : 18 -33(7), 18- 3(7)8: 518-(1)8(6); Egzglz 5‘2’1‘2’% 1 8]
arParticleStack : TVirtua ac /Il Returns the singleton instance of ; : ; e o fi ; - ootino - . ’ . ’ . ’ . ; .
Jector<StarGenerator *> mList 1l this class event is pg_ssed to GEANT for full simulation, if it satisfies appropriate [3] 1] -1] 2212 oroton 04 (0.000. 0.000. 254.998 255.000. 0.938) [2 2] [5 2]
vector<array> mVert, mSigma /I Add a track to the event &Instance() filter conditions. [4] 2| -1] 2212 proton 04 (0.000, 0.000,-254.998, 255.000; 0.938) [2 2] [6 2]
StarGenEvent *mEvent PushTrack(todo, id, px, py, pz, /Il Add a track to the event [5] 3] -1] 9902210 15 (-0.415, 0.118, 254.997, 255.001; 1.392) [3 2] [7 8]
StarParticleStack *mStack VX, VY, VZ,...) SetStack(StarParticleStack *s) _) - _) [o] 4| -1] 2212 proton 01 (0.415, -0.118,-254.997, 254.999; 0.938) [4 2] [2 2]
double mVertex[3], mSigma[3] % I'\r/]'teet:‘fgg: specified by the VMC % Realsl event from the stack and push After GEANT simulation, we can apply additional filters which can [71 5] -1] 2 u 23 (-0.013, 0.004, 7.999, 8.003; 0.232) [5 2] [9 10]
tracks out to starsim : : _ _ [8| 6] -1] 2101 ud_0 63 (-0.402, 0.114, 246.997, 246.998; 0.464) [5 2] [9 10]
string mFilename ReadEvent() a_bort the event before the more e)_(penSIV€ t”gger and TPC [9| 7] 2] 211 pi+ 01 ¢ -0.115, -0.193, 18.287, 18.289; 0.140) [7 8] [2 2]
TTree mTree extern “C{ 4 (AgStarReader ReadEvent() simulations and event reconstruction. [101 8] 3] 2112 neutron 01 (-0.300, 0.310, 236.710, 236.712; 0.940) [7 8] [2 2]
void agusread_{ AgStarReader::ReadEvent();
}

Status code -201 denotes a bookkeeping entry representing a new event generator.

Summary and Conclusion

Filtering

High energy physics cross sections feature dramatic
variations in scale, for example falling many orders of
magnitude within the transverse momentum range
measured at STAR. Comprehensive sampling of these
cross sections becomes prohibitively expensive:

the majority of computational resources are expended
drawing events from low pT. The majority of these events
will be discarded by offline analysis as they try to compare
the simulated data samples with real data,with high-pT
thresholds imposed by the online trigger.

The STAR experiment at Brookhaven National Lab continues to pursue a rich and
diverse experimental program utilizing the Relativistic Heavy lon Collider. To better
support these programs, and with the plans for eSTAR at eRHIC in mind, we have
developed a new framework for event generation which

 Leverages our existing simulation package and
e Lays the groundwork for the development of a new virtual MC application
 Establishes a simple, well-defined interface between event generators and the STAR

L . software stack

/I User-defined filtering function Filtering enables us to examine the generated event at an . Streamlines for devel rs th r £in rating new ev

virtual int Filter(StarGenEvent *event=0); early stage in the simulation, and stop processing it if it is . gt ca d €S do deve Otr?]e > t elp OCESS (|) tegd atl gne kfel ent generators

/I Returns total number of events seen unlikely to be of use in offline analysis. This saves us from rovides end users with a S'ng_ € paS_S, p_ug-_an -play WOF _OW

int numberOfEvents(); passing unnecessary events to the more computationally e Supports complex use cases, including filtering and modifying the event records

it scooptedEvental demanding parts of the simulation chain from standard event generators before simulation

int acceptedEvents(); _ .

ﬁ riEZLTZ{E?%&ZQ;Z” 0: eve”zs re’_ecze: Citors are derived from the StarFilterMaker absiract bace « provides a complete, portable event record which covers most event generators, while
eturns total numpoer or events rejecte 1 = P Y o

s s aocept class, which is responsible for aborting the event and keeping allowing developers the flexibility to extend the event record to meet specific needs.
J ’ track of useful statistics about the run. Filters can be inserted

/I'Aborts the event and signals primary maker at various points in the simulation chain, and can operate on

Il to save event record . . .

void Abort() the event record, geant hits and/or simulated trigger response.

BROOKHIVEN

NATIONAL LABORATORY

	Slide 1

