

The STAR “Plug and Play” Event Generator Framework
J. Webb, J.Novak, J. Lauret, V. Perevoztchikov

Abstract

The STAR experiment pursues a broad range of physics topics in pp, pA and AA collisions produced by the Relativistic Heavy Ion Collider (RHIC). Such a diverse experimental program demands a simulation
framework capable of supporting an equally diverse set of event generators, and a flexible event record capable of storing the (common) particle-wise and (varied) event-wise information provided by the external
generators. With planning underway for the next round of upgrades to exploit ep and eA collisions from the electron-ion collider (or eRHIC), these demands on the simulation infrastructure will only increase and
requires a versatile framework.

STAR has developed a new event-generator framework based on the best practices in the community (a survey of existing approach had been made and the “best of all worlds” kept in mind in our design). It
provides a common set of base classes which establish the interface between event generators and the simulation and handles most of the bookkeeping associated with a simulation run. This streamlines the
process of integrating and configuring an event generator within our software chain. Developers implement two classes: the interface for their event generator, and their event record. They only need to loop over
all particles in their event and push them out into the event record. The framework is responsible for vertex assignment, stacking the particles out for simulation, and event persistency. Events from multiple
generators can be merged together seamlessly, with an event record which is capable of tracing each particle back to its parent generator. We present our work and approach in detail and illustrate its
usefulness by providing examples of event generators implemented within the STAR framework covering for very diverse physics topics. We will also discuss support for event filtering, allowing users to prune the
event record of particles which are outside of our acceptance, and/or abort events prior to the more computationally expensive digitization and reconstruction phases. Event filtering has been supported in the
previous framework and showed to save enormous amount of resources – the approach within the new framework is a generalization of filtering.

Event Meta Data

public:
 TClonesArray mParticles //StarGenParticle
 TRefArray mSimulated

 int mEventNumber
 int mRunNumber
 int mDaqRunNumber
 int mGeneratorId
 int mBlueId, mYellowId
 double mCmsEnergy
 int mNRejected[3] // total, eg, filt

 int mProcessId
 int mFilterResult
 vec<float> mWeights // user defined

 int mNumParticles

public:
 StarGenEvent();

StarGenEvent StarGenEvent – the Event Record

● Provides persistence for generated particles
● Maintains a list of particles which are stacked out
 for simulation

● Keeps track of common event-wise information,
 such as event number, run number, etc...

● Optimized for ROOT I/O... particle class avoids the
● “backwards pointer” problems of HepMC.
● Four use cases in STAR/eSTAR – pp, ep, AA and
 eA have four different implementations of the
 event record.

● Developers can further customize for specific
 generators

int mPartonId[2]
double mX[2]
double mxPDF[2]
double mPt
double mCosTheta
double mPhi
double mRapidity
double mQ2

StarPPEvent : StarGenEvent

int mNucleonId[2]
int mNPartProt[2]
int mNPartNeut[2]
int mNWounded[2]
int mNBinary
double mImpactParam
double mImpactPhi
int mNumJets
...

StarHIEvent : StarPPEvent

int mPartonId
int mLeptonId
double mX
double mxPDF
double mPt
double mCosTheta
double mPhi
double mRapidity
double mQ2
double mW2
double mNu

StarDISEvent : StarGenEvent

int mNucleonId
int mNPartProt
int mNPartNeut
int mNWounded
int mNBinary
double mImpactParam
//?double mImpactPhi
int mNumJets
… TBD

StarDISAEvent : StarDISEvent

Event-Wise Data

Particle-Wise Data

StarGenParticle provides a lightweight particle class
which is essentially a facade to the well-established HEPEVT
standard, with support added for merging events from multiple
generators.

Below is a simplified printout of an event record from a pythia 8
single-diffractive simulation at 510 GeV CMS, with a toy
event generator adding muons to it. mKey is a unique ID
assigned to every particle. mIndex tracks the order in which
each event generator added the particle. And mStack keeps
track of the order in which each particle was added to the
GEANT stack. Highlighted in bold are two special particles
which are inserted to provide information about each generator.

mKey mIndex mStack Particle Id Staus 4-momentum mass MOMS KIDS
--
[0| 0| -1] 0 Rootino -201 (0.000, 0.000, 0.000, 0.000; 510.000) [0 0] [0 0]
[1| 1| 1] 13 mu- 01 (1.464, 2.619, 10.447, 10.870; 0.106) [0 0] [0 0]
[2| 0| -1] 0 Rootino -201 (0.000, 0.000, 0.000, 0.000; 510.000) [2212 2212] [1 8]
[3| 1| -1] 2212 proton 04 (0.000, 0.000, 254.998, 255.000; 0.938) [2 2] [5 2]
[4| 2| -1] 2212 proton 04 (0.000, 0.000,-254.998, 255.000; 0.938) [2 2] [6 2]
[5| 3| -1] 9902210 15 (-0.415, 0.118, 254.997, 255.001; 1.392) [3 2] [7 8]
[6| 4| -1] 2212 proton 01 (0.415, -0.118,-254.997, 254.999; 0.938) [4 2] [2 2]
[7| 5| -1] 2 u 23 (-0.013, 0.004, 7.999, 8.003; 0.232) [5 2] [9 10]
[8| 6| -1] 2101 ud_0 63 (-0.402, 0.114, 246.997, 246.998; 0.464) [5 2] [9 10]
[9| 7| 2] 211 pi+ 01 (-0.115, -0.193, 18.287, 18.289; 0.140) [7 8] [2 2]
[10| 8| 3] 2112 neutron 01 (-0.300, 0.310, 236.710, 236.712; 0.940) [7 8] [2 2]

Status code -201 denotes a bookkeeping entry representing a new event generator.

private:
 // /HEPEVT/ compatible data block
 int mStatus;
 int mId;
 int mMother[2];
 int mDaughter[2];
 float mPx, mPy, mPz;
 float mEnergy, mMass;
 float mVx, mVy, mVz;
 float mTof;
 void *get_hepevt(){ return &mStatus; }

 // Bookeeping for multiple generators
 int mIndex;
 int mStack;
 int mKey; // primary key

 int mGeneratorId;

public:
 // Setters and Getters
 SetStatus(s); GetStatus(); etc...

StarGenParticle

StarGenerator

StarGenerator
/// Set vertex and sigma
Vertex(v[3], s[3])
/// Initialize
Init() = 0
/// Prepares for the next event
public Clear() = 0
/// Generate event
Generate() = 0
/// User code executed before event
virtual PreEvent(){ }
/// User code executer post event
virtual PostEvent(){ }
/// Hook to handle PreEvent
private PreGenerate()
/// Hook to handle PostEvent
private PostGenerate()
/// Hook to handle Generate
private GenerateEvent()

/// Sets the frame of the interaction
SetFrame(frm=“CMS” , ene=510)
/// Sets the particles in RHIC's “blue”
/// and “yellow” beams
SetBlue(part=“p”)
SetYell(part=“p”)
/// Sets the impact parameter
SetImpact(min, max)

/// Fills various event record types
FillPP(), FillEP(), FillEA(), FillAA()
StarGenEvent *mEvent;

StarGenerator defines the interface between event generators
and the STAR framework. In order to integrate a new concrete
event generator, developers only need to implement one class
which inherits from this abstract base class. In general, this
means the developer must

1) Implement set methods to configure the event generator,
 allowing the generator to be steered from w/in an interactive
 ROOT session or macro.

2) Implement the Init() method to configure the concrete
 event generator

3) Implement the Generate() method to exercise the event
 generation machinery within the concrete event generator

4) Provide code to fill the various supported event types
 (pp, ep, AA and eA)

5) Push particles out into the event record
 – translate concrete event generator particle ID codes
 and status codes into the PDG and HepMC standards

6) Create the interface between the event generator class and
 the concrete event generator. In the case of FORtran event
 generators, this will involve exposing the common blocks and
 subroutines to C++.

Filtering

High energy physics cross sections feature dramatic
variations in scale, for example falling many orders of
magnitude within the transverse momentum range
measured at STAR. Comprehensive sampling of these
cross sections becomes prohibitively expensive:
the majority of computational resources are expended
drawing events from low pT. The majority of these events
will be discarded by offline analysis as they try to compare
the simulated data samples with real data,with high-pT
thresholds imposed by the online trigger.

StarFilterMaker
// User-defined filtering function
virtual int Filter(StarGenEvent *event=0);

// Returns total number of events seen
int numberOfEvents();
// Returns total number of events accepted
int acceptedEvents();
// Returns total number of events rejected
int rejectedEvents();
// Returns total number of events rejected
// since last accept
int rejectedSinceLast();

// Aborts the event and signals primary maker
// to save event record
void Abort()

Filtering enables us to examine the generated event at an
early stage in the simulation, and stop processing it if it is
unlikely to be of use in offline analysis. This saves us from
passing unnecessary events to the more computationally
demanding parts of the simulation chain.

Filters are derived from the StarFilterMaker abstract base
class, which is responsible for aborting the event and keeping
track of useful statistics about the run. Filters can be inserted
at various points in the simulation chain, and can operate on
the event record, geant hits and/or simulated trigger response.

Summary and Conclusion

The design which we settled on is based around three main classes which will be
run in the STAR Big Full Chain.

StarPrimaryGenerator
● Interface to the STAR Big Full Chain – steers simulation
● Aggregates particles from user's event records
● Handles bookkeeping, i.e. keeps track of which generated
 particle corresponds to which particle in the geant stack

● Pushes particles out to the geant stack for simulation

StarGenerator
● Abstract Base Class which developers use to implement
 their interface to the concrete event generator

● Establishes a common set of methods for base configuration of event generators
● SetFrame(…) // The interaction frame
● SetBlue (…) // ID of the particle in RHIC's “blue” beamline
● SetYellow(…) // ID of the particle in RHIC's “yellow” beamline

StarGenEvent
● Base class for event record
● Provides list of generated particles, list of stable particles stacked for simulation
● Provides event-wise information, e.g. process ID, event kinematics, etc...

Design Overview

StarPrimaryGenerator

StarPrimaryGenerator
/// Add generator, optional vertex
Add(StarGenerator*)
/// Set global vertex and sigma
Vertex(v[3], s[3])
/// Initialize
Init()
/// Generate event
Make()
/// Prepares for the next event
Clear()
/// Adds track to the particle stack
private PushTrack(id, px, py, pz, …)
/// Sets the particle stack
Stack(StarParticleStack *s)
/// Accept/reject particle based on
/// user-provided cuts
bool Accept(StarGenParticle *p)

/// Set the filename for TTree IO
SetFilename(name)

vector<StarGenerator *> mList
vector<array> mVert, mSigma
StarGenEvent *mEvent
StarParticleStack *mStack
double mVertex[3], mSigma[3]

string mFilename
TTree mTree

StarPrimaryGenerator inherits from StMaker, the class which
executes and organizes“tasks” within the STAR framework. It is
responsible for steering the entire event-generation process,
accumulating particles from all event-generators, pushing them
out to the Monte Carlo particle stack, creating the persistent
record of the event. Support for rejecting particles based on user-
defined filter conditions is also provided.

The particle stack is derived from ROOT's TVirtualMCStack interface,
which will enable us to integrate our event generators into the STAR
VMC application as the project matures. The interface with our extant
FORtran-based simulation package is provied by the AgStarReader
class.

StarParticleStack : TVirtualMCStack

/// Add a track to the event
PushTrack(todo, id, px, py, pz,
 vx, vy, vz,...)
/// Methods specified by the VMC
/// interface

AgStarReader

/// Returns the singleton instance of
/// this class
&Instance()
/// Add a track to the event
SetStack(StarParticleStack *s)
/// Read event from the stack and push
/// tracks out to starsim
ReadEvent()
extern “C” {
 void agusread_{ AgStarReader::ReadEvent(); }
}

Design goals were developed after analyzing our existing framework,
studying use cases in STAR and anticipated for eSTAR, and surveying
existing frameworks from Alice, Atlas, CMS, and FairRoot, and
considering the HepMC event record.

(1) Provide a streamlined framework in which developers can
 integrate their event generators using a minimum number of
 clearly documented base classes.

(2) Present end-users with a single-pass “plug-and-play” framework. Users add the generator to
 their chain, configure it through a uniform interface, and run their simulation in a single pass.
 Support adding event generators to our embedding framework for, e.g., adding simulations
 on top of zero- or minimum-bias triggered data.

(3) Leverage existing STAR infrastructure, maintaining support for starsim – STAR's legacy
 (FORtran) MC application – while establishing the basis for the development of the starvmc
 virtual Monte Carlo application.

(4) Implement persistent event records which stores particle information from the event generator,
 and provides a uniform treatment of event-wise data (e.g. parton-level kinematics) for the cases
 of polarized pp, ep, pA, and AA collisions. Users should be able to analyze the persistent ROOT
 files w/out loading in additional libraries.

(5) Permit end-users to mix results from multiple event generators, replay events stored in ROOT
 files, modify particle lists before stacking particles out for simulation.

(6) Provide the same capabilities for event filtering currently present in starsim.

Design Goals

I can haz pythia8?

Simulation Workflow

Primary
Generator

Filter 1

GEANT

Filter 2

Trigger
Simulation

Filter 3

TPC
Simulation

Run one or more
generators and merge
event records

Does the event pass a
user-defined filter?

Yes

No

Do the geant hits pass a
user-defined filter?

Yes

No

Do the simulated hits in
trigger detectors pass a
user-defined filter?

Full
Reconstruction

Yes

No

The STAR Primary Event generator is responsible for running the
concrete event generators and assembling the event record. The
event is passed to GEANT for full simulation, if it satisfies appropriate
filter conditions.

After GEANT simulation, we can apply additional filters which can
abort the event before the more expensive trigger- and TPC-
simulations and event reconstruction.

Primary
Generator

Filter 1

GEANT

Filter 2

Trigger
Simulation

Filter 3

TPC
Simulation

Run one or more
generators and merge
event records

Does the event pass a
user-defined filter?

Yes

No

Do the geant hits pass a
user-defined filter?

Yes

No

Do the simulated hits in
trigger detectors pass a
user-defined filter?

Full
Reconstruction

Yes

No

Stack the particles for
simulation.

Digitize hits in trigger
detectors.

Proceed with the time-
consuming portions of
the chain.

eSTAR Letter of Intent
Pythia event

The STAR experiment at Brookhaven National Lab continues to pursue a rich and
diverse experimental program utilizing the Relativistic Heavy Ion Collider. To better
support these programs, and with the plans for eSTAR at eRHIC in mind, we have
developed a new framework for event generation which

● Leverages our existing simulation package and
● Lays the groundwork for the development of a new virtual MC application
● Establishes a simple, well-defined interface between event generators and the STAR
 software stack

● Streamlines for developers the process of integrating new event generators
● Provides end users with a single pass, plug-and-play workflow
● Supports complex use cases, including filtering and modifying the event records
 from standard event generators before simulation

● provides a complete, portable event record which covers most event generators, while
 allowing developers the flexibility to extend the event record to meet specific needs.

	Slide 1

