
D O N V I T O G I A C I N T O (I N F N - B A R I)
A L E S S A N D R O I T A L I A N O (I N F N - B A R I)

D A V I D E S A L O M O N I (I N F N - C N A F)

Testing SLURM open source batch system for
a Tier1/Tier2 HEP computing facility

Outline

�  Why we need a “new” batch system
¡  INFN-Bari use case

�  What do we want from a batch system?
�  SLURM short overview
�  SLURM functionalities test

¡  … fail-tolerance considerations
¡  … pros & cons

�  SLURM performance test
�  CREAM support to SLURM
�  Future Works
�  Conclusions

Why we need a “new” batch system

�  Multi-Core CPU are putting pressure on batch system as
it is becoming quite common to have computing farms
with O(1000) CPU/cores

�  Torque/MAUI is a common and easy-to-use solution for
small farms
¡  It is open source and free
¡  Good documentation
¡  and wide user base

�  …but it could start suffering as soon as the farm becomes
larger
¡  in terms of Cores
¡  and of WN
¡  … but especially in terms of users

Why we need a “new” batch system:
INFN-Bari use case

�  We started with few WN in 2004 and constantly
growing
¡  we now have about:

÷ 5000 CORES
÷ 250 WNs

�  We have Torque 2.5.x + MAUI:
¡  We see a few problem with this setup:

÷  “Standard” MAUI supports up-to ~4000 queued jobs
¢  All the “others” jobs are not considered in the scheduling

÷ We modified the MAUI code to support up to 18000 queued jobs
and now it works
¢  … but it often saturates the CPU where it is running and soon it

becomes un-responsive to client interaction

Why we need a “new” batch system:
INFN-Bari use case (2)

÷ Torque is suffering from memory leak:
¢  It usually use ~2GB of memory under stress condition
¢  We need to restart it from time to time

÷ Network connectivity problems to a few nodes could affect the
whole Torque cluster

�  We need a more reliable and scalable batch system
and (possibly) … open source and with a low TCO

What we need from a batch system

�  Scalability:
¡  How it deals with the increasing number of Cores, jobs

submitted and users …
�  Reliability and Fault-tolerance

¡  HighAvailability features, client behavior in case of service
failures

�  Scheduling functionalities:
¡  The INFN-Bari site is a mixed site, both grid and local users

share the same resources
÷ We need complex scheduling rules and full set of scheduling

capabilities
�  Low TCO
�  Grid enabled

SLURM short overview

�  OpenSource (https://computing.llnl.gov/linux/slurm/)
�  Used by many of the TOP500 super-computing

centers
�  Documentation states that:

¡  It supports up to 65’000 WNs
¡  120’000 jobs/hour sustained
¡  High Availability features
¡  Accounting on Relational DataBase
¡  Powerful scheduling functionalities
¡  Lightweight
¡  It is possible to use MAUI/MOAB or LSF as scheduler on top

of SLURM

SLURM functionalities test

�  Functionalities tested:
¡  QoS
¡  Hierarchical Fair-share
¡  Priorities on users/queue/group etc.
¡  Different pre-emption policies
¡  Client resilience on temporary failures

÷ The client catchs the error and retries automatically after a while
¡  The server could be configured with HighAvailability

configuration
÷ This is not so easy to configure
÷  It is based on “events”

¡  The accounting information stored on MySQL/PostgreSQL DB
÷ This is also the only way to configure the Fair-Share

SLURM functionalities test (2)

�  Functionalities tested:
¡  Age based priority
¡  Support for Cgroup for limiting the usage of resources on the WN
¡  Support for pluggable “consumable resources” scheduling
¡  “Network topology” aware scheduling
¡  Job suspend and resume
¡  Different kind of jobs tested:

÷ MPI jobs
÷  “Whole node” jobs
÷ Multi-threaded jobs

¡  Limits on amount of resources usable at a given time for:
÷ Users, groups, etc.
÷  It is possible to limit also the number of submitted jobs (Queued)

SLURM functionalities test (3)

�  Functionalities tested:
¡  Computing resources could be associated to:

÷ Users, group, queue, etc
¡  ACL on queues, or on each of the associated nodes
¡  Job Size scheduling (Large MPI Jobs first or small jobs first)
¡  It is possible to submit executable directly from CLI instead of

writing a script and submitting it
¡  The jobs lands on the WN exactly in the same directory where

the user was when it is submitting the jobs
¡  Triggers on events
¡  Any batch job running on a failed node will be re-queued for

execution on different nodes
¡  Security can be managed using well-known “munge” server

SLURM functionalities test (4)

�  Functionalities tested:
¡  Job Memory Limit tested -> OK

÷  If the job uses more memory than it was configured it is killed.
¡  It is possible to use interactive jobs

÷ Also forwarding the X display
¢  srun.X11

¡  Adding or deleting a node, is quite easy:
÷ Change the configuration file and run: “scontrol reconfigure”

¡  The behaviour in case of failure of the pre-exec, is different from
what available in Torque or LSF
÷ The job after few attempt is cancelled from the queue
÷ We proposed a patch to the code and the community accepted it…
÷ …since SLURM 2.5 a failure in the pre-exec leads to re-enqueue the

job

SLURM results: cons

�  Configuring complex scheduling policy is quite
complex and requires a good knowledge of the
system
¡  Documentation could be improved with more advanced and

complete examples
¡  There are only few source of information apart from the official

site

�  There is no possibility to transport output/error files
after job execution back to the submitter users/host
¡  SLURM assumes you have a shared file-system among WNs

and “frontends”

Performance test: description

�  We have tested the SLURM batch system in different
stressing conditions:
¡  High amount of jobs in queue
¡  Fairly high number of WNs
¡  High number of concurrent submitting users
¡  Huge amount of jobs submitted in a small time interval
¡  Long run & Stess Test

�  The accounting on the MySQL databases is always
enabled

Performance test: description (2)

�  High number of jobs in the queue:
¡  One single client is constantly submitting jobs to the server for more

than 24 hours
¡  The jobs are fairly long…
¡  … so the number of jobs in the queue are increasing constantly
¡  We measured:

÷  the number of queued jobs
÷  the number of submitted job per minutes
÷  the number of ended jobs per minutes

�  The goal is to prove:
¡  the reliability of the system under high load
¡  the ability to cope with the huge amount of jobs in the queue keeping

the number of executed and submitted job as constant as possible

Performance test: results (1)

1

10

100

1000

10000

100000
Job Trend

Queued jobs
Submitted jobs per minute

Ended jobs per minute

Lo
ga

ri
th

m
 sc

al
e

Performance test: results (2)

�  The test was measured up to 25kjobs in queue
�  No problems registered

¡  The server was always responsive and the
¡  usage is as low as ~200MB
¡  The submission rate is decreasing slowly and gracefully
¡  … the number of executed jobs is not decreasing

÷ This means that the jobs scheduling on the nodes is not suffering
¡  We were able to keep a scheduling period of 20 seconds without

any problem
¡  The loadaverage on the machine is stable at ~1

�  TEST PASSED J

Performance test: description (3)

�  High amount of WNs
�  High number of concurrent clients submitting jobs:
�  Huge number of jobs to processed a short period of time:

¡  250 WNs
÷ ~6000 Cores

¡  10 concurrent client …
¡  … each submitting 10’000 jobs
¡  Up to 100’000 job to be processed

�  The goal is to prove:
¡  the reliability of the system under high load from the clients
¡  The ability to deal with a huge pick of job submission
¡  Managing a quite large farm

Performance test: results (3)

�  The test was executed in about 3.5 hours
�  No problems registered

¡  The submission do not experienced problems
¡  the memory used on the server always less than 500MB
¡  The loadaverage on the machine is stable at ~1.20
¡  At the beginning of the test the submission/execution rate is 5,5kjob

per minute
¡  During the pick of the load:

÷  the rate of submission/execution is about 350 job/minute
¡  It was evident that the bottleneck is on the single CPU/Core

computing power

�  TEST PASSED J

Stress test: results (3)

�  6000 Cores available
�  4 days of continuous job submission and execution

with ~20kjob always in the queue:
¡  No crush, no memory leak
¡  Load under control (~1 Load average)

�  TEST PASSED J

CREAM CE & SLURM

�  Interaction with the
underlying resource
management system
implemented via
BLAH

�  Already supported
batch systems: LSF,
Torque/PBS,
Condor, SGE, BQS…

�  ... and SLURM…
�  since EMI 3

Status test Cream-CE

� Blah/job submission works -> J
� Infoproviders -> J
� Accounting (Apel) -> J

�  Functionalities test are working fine

Conclusion

� SLURM is a fast and reliable batch system
solution

�  It is completely OpenSource and community
driven
¡ We already interacted successfully with the

developers team proposing patch
� We have been able to implement all the needed

configuration
¡ Both coming from torque/maui and LSF experience

Work-in-progress

� Stress test on CREM-CE with SLURM
� Test the compatibility layer (torque-slurm)

¡  In order to make the migration as easy as possible to the local
users

�  Test the implementation of SLURM on WNoDeS
cloud solution
¡  It exploit the same logic of LSF

Not only SLURM

� INFN-CNAF is testing also GridEngine:
¡  Poster presentations / 369
¡  Changing the batch system in a Tier 1

computing center: why and how

