Testing SLURM open source batch system for
a Tier1/Tier2 HEP computing facility

O

Why we need a “new” batch system
INFN-Bari use case

What do we want from a batch system?
SLURM short overview
SLURM functionalities test

... fail-tolerance considerations
... pros & cons

SLURM performance test
CREAM support to SLURM
Future Works

Conclusions

Multi-Core CPU are putting pressure on batch system as
it is becoming quite common to have computing farms
with O(1000) CPU/cores

Torque/MAUI is a common and easy-to-use solution for
small farms

It is open source and free

Good documentation

and wide user base

...but it could start suffering as soon as the farm becomes

larger

in terms of Cores
and of WN
... but especially in terms of users

» We started with few WN in 2004 and constantly
growing
we now have about:

5000 CORES
250 WNs

» We have Torque 2.5.x + MAUTI:

We see a few problem with this setup:
“Standard” MAUI supports up-to ~4000 queued jobs
o All the “others” jobs are not considered in the scheduling

We modified the MAUI code to support up to 18000 queued jobs
and now it works

o ... but it often saturates the CPU where it is running and soon it
becomes un-responsive to client interaction

Torque is suffering from memory leak:
It usually use ~2GB of memory under stress condition
We need to restart it from time to time

Network connectivity problems to a few nodes could affect the
whole Torque cluster

We need a more reliable and scalable batch system
and (possibly) ... open source and with a low TCO

What we need from a batch system

» Scalability:

How it deals with the increasing number of Cores, jobs
submitted and users ...

» Reliability and Fault-tolerance

HighAvailability features, client behavior in case of service
failures

* Scheduling functionalities:

The INFN-Bari site is a mixed site, both grid and local users
share the same resources
We need complex scheduling rules and full set of scheduling
capabilities

* Low TCO
» Grid enabled

SLURM short overview

e OpenSource (https://computing.linl.gov/linux/slurm/)

» Used by many of the TOP500 super-computing
centers

» Documentation states that:
It supports up to 65000 WNs
120’000 jobs/hour sustained
High Availability features
Accounting on Relational DataBase
Powerful scheduling functionalities
Lightweight

It is possible to use MAUI/MOAB or LSF as scheduler on top
of SLURM

SLURM functionalities test

» Functionalities tested:
QoS
Hierarchical Fair-share
Priorities on users/queue/group etc.
Different pre-emption policies
Client resilience on temporary failures
The client catchs the error and retries automatically after a while

The server could be configured with HighAvailability
configuration

This is not so easy to configure
It is based on “events”

The accounting information stored on MySQL/PostgreSQL DB
This is also the only way to configure the Fair-Share

SLURM functionalities test (2)

» Functionalities tested:
Age based priority
Support for Cgroup for limiting the usage of resources on the WN
Support for pluggable “consumable resources” scheduling
“Network topology” aware scheduling
Job suspend and resume
Different kind of jobs tested:
MPI jobs
“Whole node” jobs
Multi-threaded jobs
Limits on amount of resources usable at a given time for:
Users, groups, etc.
It is possible to limit also the number of submitted jobs (Queued)

SLURM functionalities test (3)

O
» Functionalities tested:
o Computing resources could be associated to:
~ Users, group, queue, etc
o ACL on queues, or on each of the associated nodes
o Job Size scheduling (Large MPI Jobs first or small jobs first)

o It is possible to submit executable directly from CLI instead of
writing a script and submitting it

o The jobs lands on the WN exactly in the same directory where
the user was when it is submitting the jobs

o Triggers on events

o Any batch job running on a failed node will be re-queued for
execution on different nodes

o Security can be managed using well-known “munge” server

SLURM functionalities test (4)

» Functionalities tested:
Job Memory Limit tested -> OK
If the job uses more memory than it was configured it is killed.
It is possible to use interactive jobs
Also forwarding the X display
o srun.X11
Adding or deleting a node, is quite easy:
Change the configuration file and run: “scontrol reconfigure”

The behaviour in case of failure of the pre-exec, is different from
what available in Torque or LSF

The job after few attempt is cancelled from the queue
We proposed a patch to the code and the community accepted it...

...since SLURM 2.5 a failure in the pre-exec leads to re-enqueue the
job

SLURM results: cons
O

e Configuring complex scheduling policy is quite
complex and requires a good knowledge of the
system

o Documentation could be improved with more advanced and
complete examples

o There are only few source of information apart from the official
site
e There is no possibility to transport output/error files
after job execution back to the submitter users/host

o SLURM assumes you have a shared file-system among WNs
and “frontends”

Performance test: description

* We have tested the SLURM batch system in different
stressing conditions:
High amount of jobs in queue
Fairly high number of WNs
High number of concurrent submitting users
Huge amount of jobs submitted in a small time interval

Long run & Stess Test

» The accounting on the MySQL databases is always
enabled

Performance test: description (2)

» High number of jobs in the queue:

One single client is constantly submitting jobs to the server for more
than 24 hours

The jobs are fairly long...
... S0 the number of jobs in the queue are increasing constantly
We measured:

the number of queued jobs

the number of submitted job per minutes

the number of ended jobs per minutes

» The goal is to prove:
the reliability of the system under high load

the ability to cope with the huge amount of jobs in the queue keeping
the number of executed and submitted job as constant as possible

Performance test: results (1)

Job Trend

100000

°__—_¢§o_o
1000

100

Q0
H H H

10

Logarithm scale

1

Performance test: results (2)

» The test was measured up to 25kjobs in queue

» No problems registered
The server was always responsive and the
usage is as low as ~200MB
The submission rate is decreasing slowly and gracefully

... the number of executed jobs is not decreasing
This means that the jobs scheduling on the nodes is not suffering

We were able to keep a scheduling period of 20 seconds without
any problem

The loadaverage on the machine is stable at ~1

« TEST PASSED ©

Performance test: description (3)

* High amount of WNs
» High number of concurrent clients submitting jobs:

» Huge number of jobs to processed a short period of time:
250 WNs
~6000 Cores
10 concurrent client ...
... each submitting 10’000 jobs
Up to 100’000 job to be processed

» The goal is to prove:
the reliability of the system under high load from the clients
The ability to deal with a huge pick of job submission
Managing a quite large farm

Performance test: results (3)

» The test was executed in about 3.5 hours

» No problems registered
The submission do not experienced problems
the memory used on the server always less than 500MB
The loadaverage on the machine is stable at ~1.20

At the beginning of the test the submission/execution rate is 5,5kjob
per minute

During the pick of the load:
the rate of submission/execution is about 350 job/minute

It was evident that the bottleneck is on the single CPU/Core
computing power

 TEST PASSED ©

» 6000 Cores available

* 4 days of continuous job submission and execution
with ~20kjob always in the queue:
No crush, no memory leak
Load under control (~1 Load average)

e TEST PASSED ©

CREAM CE & SLURM

» Interaction with the —
underlying resource nvanei
management system

implemented via W
BLAH Tomeat

y
[AuthN Handler (TrustManager)

» Already supported i (i v)_/
batch systems:LSF, « -
Torque/PBS, CREAM
Condor, SGE, BQS... { (core)

 ...and SLURM... B

» since EMI 3 / BC{

| |

Blah/job submission works -> ©
Infoproviders -> ©

Accounting (Apel) -> ©

Functionalities test are working fine

» SLURM is a fast and reliable batch system
solution

» It is completely OpenSource and community
driven

We already interacted successfully with the
developers team proposing patch

» We have been able to implement all the needed
configuration
Both coming from torque/maui and LSF experience

Stress test on CREM-CE with SLURM
Test the compatibility layer (torque-slurm)

In order to make the migration as easy as possible to the local
users

Test the implementation of SLURM on WNoDeS

cloud solution
It exploit the same logic of LSF

Not only SLURM

* INFN-CNAF is testing also GridEngine:

Poster presentations / 369

Changing the batch system in a Tier 1
computing center: why and how

