Background

CERN Meyrin computer center is limited to 3.5MW
- No extension inside CERN (financial & political)
- Call for tender, won by Wigner Institute / Budapest / HU
- 2x 100Gb/s links = plenty of bandwidth, redundant

Benefits

Can double CERN computing capacity (+2.5MW)
- Allows for business continuity even on major mishaps
- Free trips to Hungary (not - all managed remotely..)

Timeline

- During 2012: construction work
- Spring 2013: network and first hardware
- Autumn 2013: first production services at 10%

Performance Impact?

Initial (Gu)es(s)timates:

✔ Low impact for streaming data
 - TCP windows; capped by single disk speed
 - Most writes in this category, & capped by slowest disk

✔ Low impact for short data transfers:
 - anyway limited by disk seeks & overhead

▼ Moderate impact for metadata-only operations
 - Assume: intense activity is close to MGM

✘ high impact on repeated+small+direct-I/O (worst-case)
 - TCP windows don't help for small transfers
 - n × Δ-latency
 - ("real" jobs would compute something..)

Countermeasures

Local caching – experiments’ decision

- ROOT TTreeCache recovers most of the lost performance even for “remote” access. Default in ROOT-6..

Data locality and GEO-Scheduling (EOS-0.3)

- Place file replicas “far apart”; on access prefer closest replica
- can completely hide data read latency once size(Wigner) ≥ size(hotdata)

Per-site replicated services (EOS-0.3)

- Clients talk to local MGM (readonly, writes go to master) – no more penalty for metadata (read) operations