C++ Evolves!

Axel Naumann, CERN
CHEP 2013, Amsterdam

Content

- C++ Language Evolution

« C++ Concurrency Evolution

Axel Naumann, CERN | CHEP 2013

Content: Language

- The C++ standard and why HEP should participate

« Current work items

- Standards’ time to analysis: standardization, compiler, experiments

Axel Naumann, CERN | CHEP 2013

Content: Concurrency

- Glimpse into some other languages

« Concepts of concurrency in C++

« \Vectorization

Axel Naumann, CERN | CHEP 2013

SO JTC1/5C22/WG21: The C++ Standard

The C++ Standard

- ISO committee, member through national bodies (ANSI, DIN, SNV etc), CERN
started around the time Fermilab reduced its participation

* In principle semi-democratic: all countries have one vote. But technical
discussions + “straw polls” involve everyone

- Standards so far: 1998 “C++98” + corrigendum 2003,
2011 “C++11” (formerly known as “C++0x”)

Axel Naumann, CERN | CHEP 2013

Standardization Past

C++98 C++03 C++11
(major) (TC, bug fixes only) (major)

] |

98 99 00 01 02 03 04 05 06 07 08 09 10 11 12

I

Library TR (aka TS)

Performance TR

from http://isocpp.org

Axel Naumann, CERN | CHEP 2013

http://isocpp.org/
http://isocpp.org/

C++ Standard Plans

* Lessons from C++11

- don’t funnel everything into the next standard

* be careful about intrusive changes

- Faster, smaller updates planned: 2014, 2017

« Parallel work

- study groups (SGn)

- independent targets (Technical Specifications TS)

Axel Naumann, CERN | CHEP 2013

Study Groups

WG21 - Full Committee

Core WG Library WG

Evolution WG Lib Evolution WG

Filesystem Networking Tx. Memory

SGT SG2

Concurrency Modules

SG6 SG7/

Reflection

SG11

Databases

Numerics

Concepts Ranges Feature Test

SG12 SG13
U. Behavior Graphics

from http://isocpp.org

Axel Naumann, CERN | CHEP 2013

http://isocpp.org/
http://isocpp.org/

Current Standardization

Plans -

Perspective

C++98
(major)

C++11 C++14 C++17
(major) (minor) (major)

You are
here

98 99 00 01 02 03 04 05 06 07 08 09 10 11 12 FS:f4 15 16 17 18

from http://isocpp.org

Axel Naumann, CERN | CHEP 2013

M4 4 14
| TR
File System TS T I
l L J
Lib Fundamentals TS + more work coming
(TM, modules, ...)

Networking TS=

Concepts TS == Parallelism TS

Array Exts. TS="™= Concurrency TS

http://isocpp.org/
http://isocpp.org/

Current Standardization Plans

C++11 C++14 C++17
(major) (minor) (major)

You are
here

|

11 12 13 14 15 16 17 18
Mt 4 4

File System TS
Lib Fundamentals TS
Networking TS
Concepts TS

from http://isocpp.org Array Exts. TS

Axel Naumann, CERN | CHEP 2013

+ more work coming
(TM, modules, ...)

Parallelism TS

Concurrency 1S

11

http://isocpp.org/
http://isocpp.org/

|11
U

C++ Committee and H

- Committee members: all major IT companies, Boost, computer science

* users are a scarce resource!

- HEP uses C++ in a uniqgue environment: thousands of developers interacting
through headers with high performance code

- Wide knowledge base in production context: is there a Study Group we don’t
know anything about?

Axel Naumann, CERN | CHEP 2013

12

HEP and C++ Committee

« We have invested 10’000 developers * 20 years; we have 50..100 million lines
of C++ code

- We educate, study, suffer from and try to get the best out of C++

« WWe care about C++, we care about its future!

- We are paid by society, we have an obligation to give back what we have
learned

« C++ should not be driven (only) by compiler vendors

Axel Naumann, CERN | CHEP 2013

13

-
—
4+
4+
O
@)
=
O
D
O
O
=
R

QN
D
Q)
®

|11
U

Relevance of C++11 to H

- Bjarne Stroustrup: “C++11 feels like a new language”

- Simpler code

* More expressive code

* Ability to write robust code

* Increased performance

Axel Naumann, CERN | CHEP 2013 15

C++11: Performance

- Hashed containers (finally!): std::unordered_map / std::unordered_set to be
used instead of e.g. std::map<std::string,...>

« Container initialization std: :vector<int> v;

v.push back(12);
.push_back(42);
.push_back(17);
.push_back(12);
.push_back(9);

\'
\'
\'
\'

Axel Naumann, CERN | CHEP 2013 16

C++11: Performance

- Hashed containers (finally!): std::unordered_map / std::unordered_set to be
used instead of e.g. std::map<std::string,...>

« Container initialization std: :vector<int> v;

v.push_back(12);
.push_back(42);
.push_back(17);
.push_back(12);
.push_back(9);

std::vector<int> v{12,42,17,12,9};

\'
\'
\'
\'

Axel Naumann, CERN | CHEP 2013

C++11: Performance

- Hashed containers (finally!): std::unordered_map / std::unordered_set to be
used instead of e.g. std::map<std::string,...>

« Container initialization std: :vector<int> v;

v.push_back(12);
.push_back(42);
.push_back(17);
.push_back(12);
.push_back(9);

std::vector<int> v{12,42,17,12,9};

| — I

\'
\'
\'
\'

« Move semantics

Collection(Collection&& other);
Collection noCopy = getCollection();

Axel Naumann, CERN | CHEP 2013

C++11: Simple Code

for (std::map<std::string, std::vector<MyClass> »>::const iterator
i = m.begin(), e = m.end(); i !=e; ++i) {

Axel Naumann, CERN | CHEP 2013 19

C++11: Simple Code

for (std::map<std::string, std::vector<MyClass> >::const iterator
i = m.begin(), e = m.end(); i !'=e; ++i) {

 auto

for (auto i = begin(m), e = end(m); i != e; ++i) {

Axel Naumann, CERN | CHEP 2013 20

C++11: Simple Code

for (std::map<std::string, std::vector<MyClass> >::const iterator
i = m.begin(), e = m.end(); i !'=e; ++i) {

 auto

for (auto i = begin(m), e = end(m); i != e; ++i) {

- Range-based for

for (auto i: m) {

Axel Naumann, CERN | CHEP 2013 21

C++11: Expressive Code

- Constructor delegation
C::C(int i, D* d) { Init(i, d); }

C::C(D* d) { Init(e, d); }
C::C() { Init(-1, 0); }

C::Init(int i, D* d);

Axel Naumann, CERN | CHEP 2013

22

C++11: Expressive Code

- Constructor delegation

C:
C:
C:

C:

:C(int i, D* d) { Init(i, d); } C::C(int i, D* d);
:C(D* d) { Init(e, d); } C::C(D* d): C(o0, d) {}
:C() { Init(-1, 90); } C::C(): C(-1, o) {}
:Init(int i, D* d);

Axel Naumann, CERN | CHEP 2013 23

C++11: Expressive Code

- Constructor delegation

C::C(int i, D* d) { Init(i, d); } C::C(int i, D* d);
C::C(D* d) { Init(e, d); } C::C(D* d): C(0, d) {}
C::C() { Init(-1, 0); } C::C(): C(-1, o) {}

C::Init(int i, D* d);

« Constructor deletion

class N {
// 1intentionally not implemented
N(const N&);

Axel Naumann, CERN | CHEP 2013 24

C++11: Expressive Code

- Constructor delegation

C::C(int i, D* d) { Init(i, d); } C::C(int i, D* d);
C::C(D* d) { Init(e, d); } C::C(D* d): C(o0, d) {}
C::C() { Init(-1, 9); } C::C(): C(-1, o) {}

C::Init(int i, D* d);

« Constructor deletion

class N {
// 1intentionally not implemented
N(const N&);

class N {
N(const N&) = delete;

Axel Naumann, CERN | CHEP 2013 25

C++11: Robust Code

* Pointers versus object ownership

OKAY, HUMAN. YOU KNOW WHEN YOURE | AND SUDDENLY YoU | WELL, THATS WHAT A
e) FALLING ASLEER AND | MISSTER, STUMBLE, | SEGFAULT FEELS LIKE.
1UR: YOU IMAGINE YOURSELF | AND JOLT AWAKE?)
BERRE YOU WALKING OR YEAH! DOUBLE - CHECK YOUR
HIT COMPILE; A SONETHING, Vil ﬁ DAMN' POINTERS, OKAY?
LISTEN Up Q% A\ @

from http://xkcd.com

std::unique_ptr is owned by one, can explicitly pass ownership
std::shared_ptr is reference counted (“garbage collector”)

 Can prevent hours of debugging memory errors!

Axel Naumann, CERN | CHEP 2013

http://isocpp.org/
http://isocpp.org/

Code Robustness

-« Coverity static analysis: high impact = access after delete etc

 Clear differences in fraction B High Impact Defects in 2011

of high impact defects 3000
- Likely caused by coding style /

interface definitions 6000
- Demonstrates effect of 4000

safe coding - that is accessible

to everyone in C++11

[Kowalkowski, Mon 16:07, — 2000

Effectenbeurszaall

Axel Naumann, CERN | CHEP 2013 27

C++11: The Dark Side”?

 Also caters coding wizards

+ variadic templates; lambdas; const_expr; user defined literals;...

- Complex code remains an option in C++11

- Still, C++11 dramatically improves even novices’ code

Axel Naumann, CERN | CHEP 2013

28

Deploying C++11

29

From C++03 to C++11

« 100% supported by GCC 4.8, clang 3.3 with flag -std=c++11;
largely by GCC 4.7, clang 3.2, ICC 14, MSVC 2013

« Old C++ code usually compiles in C++11 “mode”, ROOT had about 8
changes on 3 million lines of code:

- token#pasting CPP macros

- x={...} initializers

 Object file compiled with C++11 should not be linked against old C++:
all C++11 or none

Axel Naumann, CERN | CHEP 2013

30

Current Adoption

* Few polls show a wide range of usage:

« NOVA physicists use C++11

- CMS, ATLAS, LHCDb, Belle Il are using it in frameworks and reconstruction

- ATLAS, LHCb: offering it for physics analyses in near future

- FairRoot, ALICE validated to compile in C++11

« RHIC uses C++0x as available in GCC <= 4.6; move to C++11 in 2015

« Analysis usage (except for NOvVA): approximately 0%

Axel Naumann, CERN | CHEP 2013

31

Reasons for Non-Adoption

 Physicists: Do you use C++117?

« “| have no idea what C++11 is.”

* “| had to google it.”

 Frameworks:

 Perceived lack of incentives

» Production compiler versions: SL5/6

Axel Naumann, CERN | CHEP 2013

32

Tracking Current Compilers

« Several experiments decided to aggressively follow newest compilers,
enabling the use of C++11 almost as a side effect:

- CMS’s Peter Elmer: “the compiler clearly has improved code generation
(i.e. performance), auto-vectorization has improved, the code parser is
better, etc.”

- Belle II's Thomas Kuhr: “It can help to attract new students [...]. C++11 has
very nice features and it's bad for the motivation and education of
developers if one has to tell them that they cannot use these features.”

- Imminent streamlined delivery process of C++ standard / library calls for early
adoption of compilers

Axel Naumann, CERN | CHEP 2013 33

Deployment of Current C++

- Modern compilers solves frequent user complaint: diagnostics!

std::find(vec.begin(), ConstVec.end(), 12);

| e—

N

T.C: In function 'void f()':

T.C:9: error: no matching function for call to 'find(__gnu_cxx::__normal_1
terator<double*, std::vector<double, std::allocator<double> > >, _ gnu_cxxX

::_normal_iterator<const double*, std::vector<double, std::allocator<doub
l@>S>W=Nt | nit)

Axel Naumann, CERN | CHEP 2013 34

C++ Deployment

- Modern compilers solves frequent user complaint: diagnostics!

T.C:9:4: no matching function for call to 'find'’
std: : find(Vec.begin(), ConstVec.end(), 12);

/usr/include/c++/4.6/bits/stl_algo.h:4394:5: candidate template
ignored: deduced conflicting types for parameter '_Inputlterator’
(' _normal_iterator<double *, [...]>"' vs.
' _normal iterator<const double *, [...]>")
find(_InputlIterator _ first, _Inputlterator __ last,

TAN

1 error generated.

Axel Naumann, CERN | CHEP 2013 35

Language Summary

_ ESTT 0. (UPDATE]
- The language has changed dramatically ;L'GE:L VERSION m-':

THE CPU NO LONGER OVERHEATS
WHEN YOL HOLD DOWN SPACEBAR.

* Many benefits especially for casual coders: COMMENTS:
LONGTIME USERY WRITES:

safe, simple, expressive code e
MY CONTROL KEY 15 HARD ToREACH,
S0 I HOLD SPACEBAR INSTERD, AND T
: e : CONFIGURED EMACS TO INTERPRET A
- ownership clarification RAPID TEMPERATURE. RISE. Ais CONTROL,

ADMIN WRMES:
THATS HORRIFYING.

. . T [owGTieUserY WRITES:
concise constructs for common idioms LOOK, MY SETOP WORKS FOR VE..
J0ST ADD AN OPTION To REENABLE

SPALEBAR HEPTING,

* Improved standard library EVERY CHANGE BREAKS SOMEONE'S WORKFLOL.
from http://xkcd.com

* |t saves time!

Axel Naumann, CERN | CHEP 2013

http://isocpp.org/
http://isocpp.org/

Personal Concurrency Survey

37

—ach Language Has Its Own

Philosophy

* Disclaimer: there are many wonderful languages. You should use them all.

« Will discuss random subset, showing specific concepts coupled to the

language design

- Code snippets are fragments, demonstrating concurrency

- Meant to give a taste of concurrency in (modern) languages

Axel Naumann, CERN | CHEP 2013

38

Verilog [1984]

- Event-driven hardware description language; blocks of code connected
through data flow

event e;
initial
repeat(4)
begin
#20; // wait 20 time units
->e ; // signal e
$display("e triggered");
end
always
begin
#10;
if(e.triggered)
$terminate;
end

Axel Naumann, CERN | CHEP 2013

39

Haskell [1990]

- Parallelism through “sparks”: tasks scheduled by the runtime (“par”)

import Control.Parallel

nfib :: Int -> Int
nfibn | n<=1=1
| otherwise = par nl1 (pseq n2 (n1 + n2 + 1))
where nl = nfib (n-1)
n2 = nfib (n-2)

Axel Naumann, CERN | CHEP 2013

40

D [2001]

« Threads, message passing

void spawnedFunc(Tid tid) {
receive(
(int 1) { writeln("Received ", 1);}
)

// Send a message back to the owner thread
send(tid, true);

}

void main() {
// Start spawnedFunc in a new thread.
auto tid = spawn(&spawnedFunc, thisTid);
send(tid, 42);
auto wasSuccessful = receiveOnly!(bool);

Axel Naumann, CERN | CHEP 2013

41

Scala [2003]

* Primarily based on actors: do something, then tell someone

class Pong extends Actor {
def act() {
while (true) {
receive {

case Ping =>
Console.println("Pong")
sender | Pong

case Stop =>
Console.println("Pong: stop")
exit()

Axel Naumann, CERN | CHEP 2013

42

Scala (2)

- Messages and futures: handle future result

val future = new FutureTask[String](new Callable[String]() {
def call(): String = {
searcher.search(target);
)

executor.execute(future)

Block until the result is available

val blockingResult = future.get()

Axel Naumann, CERN | CHEP 2013

43

Clojure [2007]

« Immutable states, parallel transitions

(defn test-stm [nitems nthreads niters]
(let [refs (map ref (repeat nitems 0))
pool (Executors/newFixedThreadPool nthreads)
tasks (map (fn [t]
(fn []
(dotimes [n niters]
(dosync
(doseqg [r refs]
(alter r +1 t))))))
(range nthreads))]
(doseq [future (.invokeAll pool tasks)]
(.get future))
(.shutdown pool)
(map deref refs)))

Axel Naumann, CERN | CHEP 2013

44

Go [2009]

- Goroutines: light-weight threads go someFunction()

« Channels: communication, synchronization

c := make(chan int) // Allocate a channel.
// Start the sort in a goroutine
go func() A

list.Sort()

c <- 1 // Send signal on completion.

+(O)
doSomethingForAWhile()

<-C // Wait for sort to finish.

[Binet, Mon 15, poster]

Axel Naumann, CERN | CHEP 2013

45

Concurrency In C++11

46

Threads, Synchronization Mechanisms

- C++11 provides wrapper around OS threads, replacing pthreads / Windows
threads for basic interaction

auto myThread = std::thread(workerFcn);
doSomething();
myThread.join();

- C++11 provides synchronization primitives: std::mutex, std::lock_guard,
std::condition_variable and more

 All fundamental threading ingredients in C++11

Axel Naumann, CERN | CHEP 2013

47

Tasks

« Let the runtime schedule a task

- Might not even start a separate thread at all

« Could be light-weight and / or pooled thread

auto task = std::async(workerFcn);
doSomething();
task.get();

Axel Naumann, CERN | CHEP 2013

48

Futures

- A handle of a value that does not need to exist yet

» Delays evaluation as much as possible

future<int> fut = std::async(func);
int result = thisTakesAWhile();
result *= fut.get();

Axel Naumann, CERN | CHEP 2013

49

Memory Synchronization

- Thread local variables with one copy per thread

thread local int 1i;

- Atomics where certain operations are protected from race conditions

atomic _int 1i;
void threadedWorker() {
i += 42;

¥

 Transactional Memory expected as future Technical Specification. Provides
all-or-nothing blocks (transactions)

__transaction_atomic { if (x < 10) y++; }

Axel Naumann, CERN | CHEP 2013

50

C++ Parallelization Outlook

- Extended fork / join concepts, e.g. task groups

* .then

« Resumable functions

- Schedulers / MapReduce

 Read / write locks

Axel Naumann, CERN | CHEP 2013

51

3ringing Vectorization into C++

52

Vectorization

- Traditional a + b operation: combine input a with input b; yields one output
Single Instruction, single data

- Current CPUs run + operation on one or multiple inputs (consecutive in
memory) at the same cost, e.g. SSE2 instructions
Single Instruction, Multiple Data (SIMD)

(a) Scalar Operation (b) SIMD Operation
+ B = |G
Ao 2 sl A, B, Co.
Al T LBal = K& A B C
] 1 oA, 1 2 _ _L
2 B

AT 8] T . .

A, B C
Al Y LBl = S : —

Axel Naumann, CERN | CHEP 2013

53

Vectorization Versus Performance

o We Often use Only one “Slot” out Of four Misusing vector units for Scalar Operations

* likely even more dramatic in the future +

- already more dramatic for GPUs

* Vectorized code commonly sees throughput increase by factor 2

- also due to different data / code access patterns, caching effects

Axel Naumann, CERN | CHEP 2013 54

Auto-Vectorization

Compilers combine simple loop iterations into vector operations

Function call, pointer access etc prevent auto-vectorization

Advantage: needs no extra code; leverages compiler knowledge and
optimization

Disadvantage: rarely possible; needs intrusive code refactoring; gets easily
broken also because the vectorization is not explicitly visible (except for
“ugliness” of code)

Axel Naumann, CERN | CHEP 2013 55

Vector Types

- Can use new type: vector of input values

- With explicit vector CPU instructions (intrinsics), for instance by overloading
operator+()

- Example: Ve, now in ROOT 6, soon in ROOT 5.34; proposed to C++ N3571

Vc::float v x = ...; Vc::float vy = ...;
Vc::float v r = Vc::Sgrt(x*x + y*y);

- Advantage: high performance gains; explicit vectorization; code usually
“makes sense” (i.e. human brain is okay with vector operations)

- Disadvantage: needs code refactoring; depends on CPU specifics (but hidden
in library); interferes with compiler’s work

Axel Naumann, CERN | CHEP 2013 56

http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2013/n3571.pdf
http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2013/n3571.pdf

Intel Cilk Plus SIMD Vectors

- New array notation with index ranges and stride [from:num:stride]

a':] = 5; // set all elements to 5

] = 17; // set first 7 elements to 17
:2]

= 17; // set first 4 odd elements (“stride 2”) to 1

QJ

» Defines operations
a[:] = b[:] + 5;
c[:] =al[:] + b[:];

- Works also for multiple dimensions

dl:][:] =

- Disadvantages: language extension; limited compiler support (ICC; GCC +
clang not there yet)

Axel Naumann, CERN | CHEP 2013

57

Vector Annotation

 For instance OpenMP 4.0 or compiler specific pragmas

void add floats(float *a, float *b, int n){
int 1i;
#pragma simd
for (i=0; i<n; i++){
ali] = a[i] + b[i];
}

¥

* Advantage: long history; language agnostic; simple to write because based
on well understood loops

« Disadvantage: lots of tweaks needed; architecture specific; changes loop
semantics (iteration sequence) without being part of the language

Axel Naumann, CERN | CHEP 2013

58

Language Supported Vectorization

« Two C++ proposals discussed

- std::for_each(std::vec, what_to_do); N3554

- simd_for(auto i: collection) {...}; N3561

- Latter clearly signals different loop semantics

- Disadvantage: more pages in the standard!

- Advantages: standard (compiler support), leverages compiler knowledge;
based on for loops thus easy to write / understand

Axel Naumann, CERN | CHEP 2013 59

http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2013/n3554.pdf
http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2013/n3554.pdf
http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2013/n3561.pdf
http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2013/n3561.pdf

—lemental Functions: Vectorized Math

- simd_for gracefully handles calls to non-vectorized functions

 Vectorization benefits from new concept elemental function: “function that
does not have side effects”

- currently compiler-specific annotation, will likely end up in C++

- Math functions should be vectorization-friendly; see e.g. VDT https://
svnweb.cern.ch/trac/vdt [Piparo, Tue 17:47, Effectenbeurszaall

Axel Naumann, CERN | CHEP 2013

60

https://svnweb.cern.ch/trac/vdt
https://svnweb.cern.ch/trac/vdt
https://svnweb.cern.ch/trac/vdt
https://svnweb.cern.ch/trac/vdt

Vectorization In Practice

* Vectorized code must

* not use virtual functions

- align data as vectors

 Very intrusive

* changes interfaces

» changes data formats

- But it gives you a very noticeable performance boost already today

Axel Naumann, CERN | CHEP 2013 61

Vectorization Efforts

- Several lessons already learned

* Vectorization improves cache locality

 Refactoring is non-trivial

- Example presentations at CHEP 2013:

- Geant V [Carminati, Thu 12:06, Effectenbeurszaal]

- Vectorized geometry [Gheata, Mon 17:46, Effectenbeurszaall

Axel Naumann, CERN | CHEP 2013

62

Structs Of Arrays

63

C++ MemOry LayOUt, Or class XYZ {
The Curse Of Object Oriented Data Gouble v

double z;

s

* Assume algorithm that calculates

for (int 1 = @0; 1 < fManyXYZ.size(); ++i) {
sum += fManyXYZ[i].x * fManyXYZ[i].x
+ fManyXYZ[i].z * fManyXYZ[i].z;

Axel Naumann, CERN | CHEP 2013

class XYZ {

Array of Pointers to Structs couble s
ouble y;
double z;
» “TObjArray<XYZ>", vector<XYZ*>)
XY Z
XYz Xy Z Xyz
Xy Z Xyz
- ‘2 -
- Xy Z S T

for (int 1 = @0; 1 < fManyXYZ.size(); ++i) {
Xy Z sum += fManyXYZ[1i].x * fManyXYZ[1].X
+ fManyXYZ[i].z * fManyXYZ[i].z;

Axel Naumann, CERN | CHEP 2013 } 65

class XYZ {
double x;

Array of Structs Gouble v,

double z;

» vector<XYZ>, XYZ[N] }s

XYZ XYZ XYZ XYZ XYZ XYZ XYZ XYZ XYZ YXZ

1.4

for (int 1 = @0; 1 < fManyXYZ.size(); ++i) {
sum += fManyXYZ[1i].x * fManyXYZ[1].X
+ fManyXYZ[i].z * fManyXYZ[i].z;

Axel Naumann, CERN | CHEP 2013 }

class XYZ {

Structs of Arrays (SOA) double x;

» structOfArray<XYZ>

XXX XXXXXXX

Tk__ S

YYYYYYYYYY

LL2727272727727

T

double y;
double z;

s

for (int i = @; i < fManyXYZ.size(); ++i) {

Axel Naumann, CERN | CHEP 2013 }

sum += fManyXYZ[1i].x * fManyXYZ[1].X
+ fManyXYZ[i].z * fManyXYZ[i].z;

67

SOA Memory Layout

» structOfArray<XYZ>

SSE

XXX XKXXXXX

YYYYYYYYYY

L2271 227727

ook

for (int
sum +=
+

Axel Naumann, CERN | CHEP 2013 }

class XYZ {
double x;
double y;
double z;

s

i =0; i < fManyXYZ.size(); ++i) {
fManyXYZ[1].x * fManyXYZ[1i].X
fManyXYZ[1i].z * fManyXYZ[1].z;

68

SOA Element Access

- Accessing element of object number | NaiveXYZSOA {
vector<double> Xx;

vector<double> y;
vector<double> z;
} fManyXYZ;

what used to be fManyXYZ[i].x

— e

now becomes fManyXYZ.x[1i]

| —

— S

« Workaround, wonderful R&D tool: Intel’s Arrow Street
[Costanza, Mon 17:25, Effectenbeurszaalj

* Proper solution to convert vector<Jets> into struct of arrays:
» language support, or

- library component, but needs C++ reflection (element description)

Axel Naumann, CERN | CHEP 2013

69

Concurrency Summary

- All basic ingredients in C++11, even more to come
- Standard library instead of custom implementations (e.g. ROOT TThread)

 Available concepts of concurrency match those of other languages, no
intrinsic disadvantage of using C++

* More concepts will become available - your feedback is welcome!

Axel Naumann, CERN | CHEP 2013

70

Conclusion

71

For Experiments

- Don't convert to a new language standard, but prepare for a continuous
standard and compiler delivery process

« Benefit from safer C++

- Benefit from better compilers

Axel Naumann, CERN | CHEP 2013

72

For Physicists

* There is nothing to be done by them - they should not need to act

- ROOT, Geant, frameworks should demonstrate the advantage of simple code,
clear ownership, improved standard library

TH1: :AddFunction(std: :unique ptr<TF1>)

- C++11 and after brings us closer to the ultimate goal:

» Write correct code and analyses easily!

« From data taking to physics result quickly!

Axel Naumann, CERN | CHEP 2013 73

