Optimization of data life cycles

M. Gasthuber, DESY; A. Giesler, FZ Jülich; K. Schwarz, GSI; M. Hardt, C. Jung, J. Meyer, F. Rigoll, R. Stotzka, A. Streit, KIT

Overview

- Motivation
- LSDMA Overview
- Highlight Activities in DSIT
- Highlight Activities in DLCLs
- Experiences
- Summary and Outlook

(Big) Data in Science

Data life cycle as a central part of the scientific life cycle

Big Data

- Volume
- Variety
- Velocity
- (Veracity)

Data in modern science:

- Valuable good
- Data deluge
- Data exploration as 4th pillar

Archival, Preservation, Curation

- Federations
- Provenance
- Metadata
- Security and Privacy
- Safety

. . .

Hierarchical Storage

communities usually only care about some aspects of data management

Scientific

LSDMA

Aspects of Data Management

- Access:
 - Authentication and Authorization Infrastructure
 - Persistent identifiers
 - Open Access/Data

LSDMA: Dual Approach

Data Life Cycle Labs

Joint R&D with scientific user communities

- Optimization of the data life cycle
- Community-specific data analysis tools and services

Data Services Integration Team Generic methods R&D

- Data analysis tools and services common to several DLCLs
- Interface between federated data
 infrastructures and DLCLs/communities

LSDMA Facts & Figures

- Initial duration: 2012-2016
 - Project is a Helmholtz portfolio extension → inclusion of activities into Helmholtz program-oriented funding in 2015, cross-program initiative
- Partners:
 - Helmholtz Association: KIT, DESY, FZJ, GSI
 - External: DKRZ, U-Heidelberg, U-Ulm, TU-Dresden, U-Hamburg, HTW-Berlin, U-Frankfurt
- Coordination: KIT

Christopher Jung, KIT, Optimization of Data Life Cycles

LSDMA

Events and Collaborations

- Events:
 - Annual symposium "The Challenge of Big Data in Science"
 - Annual Community Forum
 - Planned: Technical Forum
 - Cooperation w/GridKa School
- LSDMA members involved in international projects and ESFRI items:
 - Human Brain Project
 - EUDAT
 - Research Data Alliance
 - DARIAH
 - European XFEL
 - FAIR

for the Arts and Humanities

RESEARCH DATA ALLIANCE

DSIT (1)

Six work packages

- Federated Identity Management
 - Credential translation between SAML and other authentication services (X.509, OpenID, OAuth2)
- Federated Data Access
 - Performance tuning of services, e.g. dCache and other scalable object stores
 - Simplification of access to data for users: http/WebDAV, NFS backend, Globus Online, KIT Data Manager
 - WAN-like control mechanisms for federated data access and metropolitan area networks
- Metadata Catalogs and Repositories
 - Search over an arbitrary number of UNICORE metadata instances
 - Design and implementation of 'Open Archives Initiative Protocol for Metadata Harvesting' (OAI-PMH) infrastructures

DSIT (2)

- Archive Service
 - Creation of policies and service levels: where, whether and how long datasets are to be archived
 - Bitstream preservation: evaluation of different archival middlewares
- Monitoring, Modeling, Optimization
 - Monitoring the I/O performance for analysis of performance loss between subsystems using SIOX framework and visualizing with VAMPIR
 - Monitoring information within LUSTRE for automatic detection of performance degradation
- Data-intensive Computing
 - Automatic and policy based triggering of analysis workflows, e.g. metadata extraction after data ingest
 - LAMBDA execution framework for large scale applications

DLCL Earth and Environment

- Data sources:
 - Instruments, e.g. GLORIA, MIPAS
 - Simulation
- Various data formats: HDF5, NETCDF, ASCII
- Goals:
 - Speedup and simplification of analyses by
 - new database allowing fast parallel access
 - matching of geo coordinates inside DB
 - import of all satellite meta data
 - Simplification of analysis workflows
 - Full safe replication for ENES (w/FZJ, DKRZ and CSC within EUDAT; based on iRODS) being set up

DLCL Energy

- SISKA: analyzing stereoscopic satellite images for estimating the efficiency of solar energy
 - Complex workflow w/several languages used
 - → Porting to the cluster of the Large Scale Data Facility (LSDF) at KIT
- Most energy data concerns privacy (e-cars, at work, ...)
 - Standard anonymization or pseudonymization techniques often insufficient
 - Affects data usabilty
 - \rightarrow New focus of DLCL activities

courtesy of SISKA

DLCL Health

- anatomical connections of cortical areas and subcortical nuclei
 - → Polarized light imaging (PLI) in human postmortem brains with resolution of µm at FZ Jülich
 - Secure, performant transport mechanism with UFTP (up to 4 times faster than SCP)
 - Parallelized post-processing on HPC
 - Long-term storage
- Brain Big Data project in collaboration w/U-Düsseldorf: high resolution scans of postmortem brain slices
 - Central storage at FZ Jülich
 - Policy based replication w/iRODS

DLCL Key Technologies

- Ultra-fast imaging with spatiotemporal observations (even in living species)
 - → Algorithms on GPGPU systems allow quick preview of recorded volumes
 - → New algorithm for high quality images using fewer projections
- High throughput microscopy for zebrafish embryo development
 - 3D volumes of embryos
 - \rightarrow Automatic data transfer and ingest into LSDF w/KIT Data Manager

DLCL Structure of Matter

- Photon Science has several similarities with HEP, differs in analysis, re-use and collaboration sizes
 - \rightarrow I/O tracing for detailed studies of storage systems used
 - \rightarrow Baseline support for HDF5
 - \rightarrow Parallel execution and programming
- Heavy ion research at FAIR, triggerless detector
 - Perform high speed (online) data processing in real time
 - \rightarrow ZeroMQ integrated into FairRoot
 - Metropolitan area network via fibre link
 - → Optimization of data rates between U-Frankfurt and GSI

LSDMA

Experiences

Communities differ in

- Previous knowledge
- Level of specification of the data life cycle
- Tools, services, formats used
- Size

Needs driven by

- '3 Vs'
- Cooperation between groups
- Policies
 - Open Access/Data
 - Long-term preservation
 - Data privacy

Lessons learned

- Communities:
 - Focus on data analysis
 - \rightarrow Evolution, not revolution in data management
 - Often have very specific needs
 - Visualization important
 - Profit from 'consulting'
- Interoperable AAI crucial
- Data privacy very challenging, both legally and technically
- Automatic workflows and metadata important
- Funding of data archival often unclear

Summary and Outlook

- LSDMA's dual approach
 - DLCLs
 - DSIT
- Project's R&D driven by the communities' need \rightarrow diverse activities
 - AAI interoperability
 - Automatic Metadata Extraction
 - Data Privacy
 - Speedup and simplification of analyses

- ...

- Inclusion of activities into Helmholtz program-oriented funding in 2015, cross-program initiative
- Plans for additional Data Life Cycle Labs