
Performance of popular open source databases
for monitoring applications

D.Kovalskyi, I.Sfiligoi, F.Wuerthwein, A.Yagil
University of California, San Diego

The Question

Problem: we need a database, but we don’t know how much
resources it will need to provide a reliable solution

Concern: can a single server handle the load or we have to
plan for horizontal scaling?

Question: how well popular open source DBs perform on a
single server. If it’s likely that at some point we need to adopt a
more scalable solution, should we start with it right away or we
can get more done with traditional systems?

Test Procedure

Production System
• GlideMon - user job monitoring for distributed condor job submission system
• We have a working system based on a single MySQL server

Test Setup
• Snap-shot of the GlideMon database:

• Total number of jobs: ~14 M
• Last two weeks since the date DB was frozen:

• Number of jobs: 2.2M
• Number of tasks: 5 K
• Number of users: 251

• Database size: ~10-20GB

Hardware
1. Intel Core 2 Duo E8500 @ 3.17 GHz, 2 cores, 8GB RAM, RAID5, Fedora 18
2. Intel Xeon X5472 @ 3.00 GHz, 8 cores, 12GB RAM, HDD, Scientific Linux 5 (remote)

Test Queries
1. Complex single threaded aggregation query

• Count number of analysis jobs in each state for each user within last N days
• Slow query - materialized view in production

2. Simple select query for a number of simultanous users
• List of tasks for a given user with number of jobs summary
• Dynamic query - run it without caching

Conclusions

• Often it is not easy to predict if a database management system (DMS) for a new application
would fit in a single server or a cluster maybe needed
• DMS that performs well in both single node and multi nodes modes may be a good choice to

avoid extra work for migration
• New generation of DMS promise good scalability, but how well they perform

before we need to scale?
• Traditional relational DMS perform the best in a single node mode

• Lots of tools and documentation is available
• PostgreSQL and MySQL show similar performance in most tests

• New non-relational DMS are designed with multi node mode in mind
• MongoDB performed well in a single-node test.

• The system is well spread, but tools are lacking
• Comparable performance with RDMS, but in general is slower

• Can be a reasonable compromise when there is a reasonable chance that one
server is not enough, but a cluster will be needed sooner than with RDMS

• Apache Cassandra failed to deliver what we need
• Better matching of DMS to application would help (documentation is deficient)

• Only after implementing a realistic database we found that the tool doesn’t fit our needs
• The smaller the database - the easier is to find a proper tool and achieve adequate performance

CHEP2013: October 14 - 18, 2013 in Amsterdam, The Netherlands

Results

First Test
• Results (flashed I/O cache)

• MySQL (server1): 72 sec
• MySQL (server2): 73 sec

• PostgreSQL (server1): 62 sec
• MongoDB (server1): 290 sec

• MongoDB uses ~x2 more disk space and can be
penalized by worse caching

• Clearly there is a difference in performance
though

• Apache Cassandra failed
• Performance strongly depends on schema and data

structure in use
• All reasonable optimizations were used (indexing

on many variables)

Second Test
Total

execution
time

One query
(median)

One query
(95%)

MySQL (2 threads, server 1) 27.36 sec 0.01 sec 0.24 sec

MySQL (10 threads, server 1) 26.87 sec 0.07 sec 1.21 sec

MySQL (2 threads, server 2, remote connection) 47.63 sec 0.03 sec 0.41 sec

MySQL (10 threads, server 2, remote connection) 25.91 sec 0.08 sec 1.21 sec

PostgreSQL (2 threads, server 1) 15.17 sec 0.02 sec 0.10 sec

PostgreSQL (10 threads, server 1) 14.13 sec 0.10 sec 0.13 sec

MongoDB (2 threads, server 1) 77.78 sec 0.05 sec 0.80 sec

MongoDB (10 threads, server 1) 59.14 sec 0.12 sec 2.47 sec

Apache Cassandra Failed Failed Failed

Hardware role
• Caching in RAM and SSD give the largest performance gain
• Total execution time with OS caching of I/O:

• MySQL: 27 sec
• PostgreSQL: 37 sec
• MongoDB: 260 sec

• In-memory database solutions are becoming popular
• IMDB allows for a better/more efficient design
• Using MySQL Memory engine we haven’t observed any performance gain compared

with MyISAM + RAM based caching by OS
• CPU is mostly not an issue - more RAM and faster data-storage are more critical

Apache Cassandra Issues
• Cassandra is not well suitable for dynamic aggregation operations
• A simple query to count number of records takes enormous amount of time due to

need to scan all the “columns”
• By default this operation is limited in CQL to the first 10000 entries selected

• Dynamic filtering is not expected either - one needs to allow filtering explicitly
• Selection must be formed with at least one “equal” statement on an indexed column

Overview

CAP Theorem: it is impossible for a distributed computer system to simultaneously provide
all three of the following guarantees:

• Consistency (all nodes see the same data at the same time)
• Availability (a guarantee that every request receives a response about whether it was

successful or failed)
• Partition tolerance (the system continues to operate despite arbitrary message loss or

failure of part of the system)

Databases tested:

Relational Non-relational
MySQL v5.5.32 MongoDB v2.2.4

PostgreSQL v9.2.4 Apache Cassandra v2.0

Partition-Tolerance

Availability Consistency

Single Server

MySQL,
PostgreSQL

MongoDB

Cas
sa

nd
ra

http://en.wikipedia.org/wiki/Distributed_computing
http://en.wikipedia.org/wiki/Distributed_computing
http://en.wikipedia.org/wiki/Consistency_(database_systems)
http://en.wikipedia.org/wiki/Consistency_(database_systems)
http://en.wikipedia.org/wiki/Availability
http://en.wikipedia.org/wiki/Availability
http://en.wikipedia.org/w/index.php?title=Network_partitioning&action=edit&redlink=1
http://en.wikipedia.org/w/index.php?title=Network_partitioning&action=edit&redlink=1

