
Extending the FairRoot
framework to allow for simulation

and reconstruction of free
streaming data

Mohammad Al-Turany

Dennis Klein

Anar Manafov

Alexey Rybalchenko

Florian Uhlig

 (GSI Darmstadt)

10/14/13 M. Al-Turany, CHEP 2013 Amsterdam 1

What Does it Mean?

• Introduce pipelined data processing to the current

Framework. (This talk!)

• Introduce time based simulation instead of event wise

one. (already shown in CHEP 2012)

• Ideally: Keep compatibility to the current offline

scheme.

10/14/13 M. Al-Turany, CHEP 2013 Amsterdam 2

Start testing
the VMC
concept for
CBM

First Release of
CbmRoot

MPD (NICA)
start also using
FairRoot

ASYEOS joined

(ASYEOSRoot)

GEM-TPC
seperated
from PANDA
branch
(FOPIRoot)

Panda decided
to join->

FairRoot: same
Base package
for different
experiments

R3B joined
EIC (Electron
Ion Collider
BNL)

EICRoot

2011 2010 2006 2004

FairRoot

2012

SOFIA

(Studies On

Fission with

Aladin)

10/14/13 M. Al-Turany, CHEP 2013 Amsterdam 3

ENSAR-ROOT

Collection of
modules used by
structural nuclear
phsyics exp.

2013

FairRoot: Implementation

13.03.13

Root

T
E
v
e

R
O

O
T
 I
O

TG
e
o

TV
ir

tu
a

lM
C

C
in

t

TT
re

e

…

P
ro

o
f

G
e
a

nt
3

G
e
a

nt
4

G
e
n
a
t4

_
V

M
C

Libraries

…

V
G

M

 FairRoot

…

R
un

 M
a

n
a

g
e
r

IO
 M

a
na

g
e
r

P
a
ra

m
e
te

r
M

a
na

g
e
r

+

D
B
 I
n
te

rf
a

ce

Ev
e
nt

 D
is

p
la

y

M
C

A
p

p
li
ca

ti
o
n

M
o
d

ul
e

D
e
te

ct
o
r

Ta
sk

M
a

g
n
e
ti
c

Fi
e
ld

…

Ev
e
n
t

G
e
n
e
ra

to
r

CbmRoot

PandaRoot AsyEosRoot

R3BRoot SofiaRoot MPDRoot

FopiRoot EICRoot

10/14/13 M. Al-Turany, CHEP 2013 Amsterdam 4

Next challenge is: Online vs. Offline or
Online + Offline ?

10/14/13

300 GB/s
20M Evt/s

How to distribute the processes?
How to manage the data flow?
How to recover processes when they crash?
How to monitor the whole system?
……

1 TB/s

> 60 000

CPU-core

 or Equivalent

 GPU, FPGA, …

> 60 000

CPU-core

 or Equivalent

 GPU, FPGA, …

M. Al-Turany, CHEP 2013 Amsterdam 5

Design constrains

• Highly flexible:

o different data paths should be modeled.

• Adaptive:

o Sub-systems are continuously under development and improvement

• Should work for simulated and real data:

o developing and debugging the algorithms

• It should support all possible hardware where the algorithms could

run (CPU, GPU, FPGA)

• It has to scale to any size! With minimum or ideally no effort.

10/14/13 M. Al-Turany, CHEP 2013 Amsterdam 6

FairRoot: Where we are now?

• ROOT event loop

• User code in Task hierarchy

• Task hierarchy runs sequentially in one process

• Tasks implement only algorithms (can be exchanged/replaced)

10/14/13 7

Parameter
Manager

Input
File(s)

Parameter
File(s)

Database

T 5

Output
File

T 1

T 3

T 2

T 4

T 6

t0 time t1

M. Al-Turany, CHEP 2013 Amsterdam

FairRoot: Where we are going ? (almost there!)

• Each Task is a process (can be Multi-threaded)

• Message Queues for data exchange

• Support multi-core and multi node

10/14/13 8

Parameter
Manager

Input
File(s)

Parameter
File(s)

Database

T 5

Output
File

T 1

T 3

T 2 T 4 T 6

t0 time t1

Publish parameters

(when new ones available)

M. Al-Turany, CHEP 2013 Amsterdam

Before Re-inventing the Wheel

• What is available on the market and in the community?

o A very promising package: ZeroMQ is available since 2011

• Do we intend to separate online and offline? NO

• Multithreaded concept or a message queue based one?

o Message based systems allow us to decouple producers from consumers.

o We can spread the work to be done over several processes and machines.

o We can manage/upgrade/move around programs (processes) independently

of each other.

10/14/13 M. Al-Turany, CHEP 2013 Amsterdam 9

• A messaging library, which allows you to design a complex

communication system without much effort

• Abstraction on higher level than MPI (programming model is easier)

• Is suitable for loosely coupled and more general distributed systems

• Multiplatform, multi-language (+30)

• Small (20K lines of C++ code)

• Large and active open source community.

• Open source LGPL free software (large community)

10/14/13 10 M. Al-Turany, CHEP 2013 Amsterdam

ZeroMQ sockets provide efficient transport options

• Inter-thread

• Inter-process

• Inter-node

– which is really just inter-
process across nodes
communication

10/14/13

PMG : Pragmatic General Multicast (a reliable multicast protocol)
Named Pipe: Piece of random access memory (RAM) managed by
the operating system and exposed to programs through a file descriptor
and a named mount point in the file system. It behaves as a first in first
out (FIFO) buffer

M. Al-Turany, CHEP 2013 Amsterdam 11

The built-in core ØMQ patterns are:

• Request-reply, which connects a set of clients to a set of services.

(remote procedure call and task distribution pattern)

• Publish-subscribe, which connects a set of publishers to a set of

subscribers. (data distribution pattern)

• Pipeline, which connects nodes in a fan-out / fan-in pattern that

can have multiple steps, and loops. (Parallel task distribution and

collection pattern)

• Exclusive pair, which connect two sockets exclusively

10/14/13 M. Al-Turany, CHEP 2013 Amsterdam 12

Current Status

• The Framework delivers some components which can be connected to

each other in order to construct a processing pipeline(s).

• All components share a common base called Device (ZeroMQ Class).

• Devices are grouped by three categories:

o Source:

• Data Sampler

o Message-based Processor:

• Sink, Splitter, Merger, Buffer, Proxy

o Content-based Processor:

• Processor

10/14/13 M. Al-Turany, CHEP 2013 Amsterdam 13

Design

10/14/13

Experiment/dete
ctor specific code

Framework
classes that
can be used

directly

M. Al-Turany, CHEP 2013 Amsterdam 14

 ZeroMQ

Root (Event loop)

10/14/13

FairRootManager

FairRunAna

FairTasks

Init()
Re-Init()

Exec()
Finish()

FairMQProcessorTask

Init()
Re-Init()

Exec()
Finish()

ROOT Files, Lmd Files, Remote event server, …

Integrating the existing software:

M. Al-Turany, CHEP 2013 Amsterdam 15

FairRoot: Example 3

10/14/13 M. Al-Turany, CHEP 2013 Amsterdam 16

4 -Tracking stations with

a dipole field

Simulation:
A) 10k event: 10 Protons/ev
B) 20k event: 300 Protons/ev

Digitization

Reconstruction:
Hit/Cluster Finder

10/14/13 M. Al-Turany, CHEP 2013 Amsterdam 17

TClonesArray TClonesArray

From digits to hits with ROOT:

RUN CPU Time (s)
(Wall time)

Memory
(Mbyte)

10k Events,
10 Protons/event

12 143

20k Events,
300 Protons/event

162 241

10/14/13 M. Al-Turany, CHEP 2013 Amsterdam 18

TClonesArray

Payload Payload

TClonesArray

Payload Payload

TClonesArray TClonesArray

Sampler

Processor

Sink

From digits to hits with :

Test 1: Reconstruction
10k Event 10 Tracks/event

10/14/13 M. Al-Turany, CHEP 2013 Amsterdam 19

sample

r
sink processor

Push Push

root 11.85s 143MB

6.51 s

135 MB

8.78 s

38 MB

3.24 s

38 MB

sample

r

sink processor

Push
Push

6.96 s

135 MB
5.56 s

34MB

1.89 s

39 MB

sink processor

Push

Push

5.59 s

35MB

1.89 s

39 MB

CPU Time 25% less time

48 % more memory

CPU Time 40% less time

97 % more memory

Test 1: Reconstruction
20k Event 300 Tracks/event

10/14/13 M. Al-Turany, CHEP 2013 Amsterdam 20

sample

r
sink processor

Push Push

root 162 s 241MB

93 s

151 MB

142 s

71 MB

15 s

41 MB

sample

r

sink processor

Push
Push

103 s

135MB
94 s

35MB

10 s

40 MB

sink processor

Push

Push

93 s

35MB

10 s

40 MB

CPU Time 14% less time

10 % more memory

CPU Time 36 % less time

18 % more memory

Test 1: Reconstruction
20k Event 300 Tracks/event

10/14/13 M. Al-Turany, CHEP 2013 Amsterdam 21

sample

r
sink processor

Pub Sub Pub Sub

root 162 s 241MB

94 s

150 MB

105 s

57 MB

11 s

40 MB

splitter

sink processor
Pub Sub 104 s

135MB

93 s

36 MB

10 s

40 MB

sink processor
Pub sub

93 s

35MB

10 s

40 MB

CPU Time 35% less time

2 % more memory

CPU Time 36 % less time

32 % more memory
sampler

3 s

33 MB

10/14/13 M. Al-Turany, CHEP 2013 Amsterdam 22

TClonesArray

Payload Payload

TClonesArray

Payload Payload

TClonesArray TClonesArray

Sampler

Processor

Sink
Overhead: Copy data from
STL to TClonesArray and

back

10/14/13 M. Al-Turany, CHEP 2013 Amsterdam 23

TClonesArray

Payload Payload

TClonesArray

Payload Payload

Sampler

Processor

Sink

Test 1: Reconstruction
20k Event 300 Tracks/event

10/14/13 M. Al-Turany, CHEP 2013 Amsterdam 24

sample

r
sink processor

Push Push

root 162 s 241MB

73 s

135 MB

13 s

34 MB

14 s

82 MB

sample

r

sink processor

Push
Push

74 s

135MB
7 s

34 MB

 8 s

40 MB

sink processor

Push

Push

7 s

34MB

8 s

40 MB

CPU Time 55% less time

4 % more memory

CPU Time 55 % less time

17 % more memory

Test 1: Reconstruction
20k Event 300 Tracks/event

10/14/13 M. Al-Turany, CHEP 2013 Amsterdam 25

sample

r
sink processor

Pub Sub Pub Sub

root 162 s 241MB

74 s

135 MB

13 s

34 MB

14 s

83 MB

splitter

sink processor
Pub Sub 78s

135MB

7 s

34MB

10 s

39MB

sink processor
Pub sub

7 s

34 MB

10 s

39 MB

CPU Time 54% less time

2 % more memory

CPU Time 52 % less time

30 % more memory
sampler

3 s

33 MB

Summary

• ZeroMQ communication layer is integrated into our offline

framework (FairRoot).

• On the short term we will keep both options: ROOT based event loop

and concurrent processes communicating with each other via

ZeroMQ.

• On long term we are moving away from single event loop to

distributed processes.

10/14/13 M. Al-Turany, CHEP 2013 Amsterdam 26

Next Step: Design and development of a dynamic
deployment system (DDS)

• STORM is very attractive but no native support for C++ !

• We need to utilize any RMS (Resource Management system)

• Support different topologies and process dependencies

• Device (process) is a single entity of the system

o Each device has its own watchdog process

o Devices are defined by a set of props and rules,

o All devices are statically inherited (should support) 3 interfaces:

IDDSConfig, IDDSStatus, and IDDSLog

• …..

 10/14/13 M. Al-Turany, CHEP 2013 Amsterdam 27

Thank you

Backup

10/14/13 M. Al-Turany, CHEP 2013 Amsterdam 28

Message format (Protocol)

• Potentially any content-based processor or any source can change

the application protocol. Therefore, the framework provides a

generic Message class that works with any arbitrary and continuous

junk of memory (FairMQMessage).

• One has to pass a pointer to the memory buffer, the size in bytes,

and can optionally pass a function pointer to a destructor, which will

be called once the message object is discarded.

10/14/13 M. Al-Turany, CHEP 2013 Amsterdam 29

 Native InfiniBand/RDMA is faster than IP over IB

10/14/13 M. Al-Turany, CHEP 2013 Amsterdam 30

Implementing ZeroMQ over IB verbs will improve the
performance.

FairBase/examples/Tutorial3

10/14/13 M. Al-Turany, CHEP 2013 Amsterdam 31

Fairbase/example/Tutorial3

Payload in Mbyte/s as function of message size

0

200

400

600

800

1000

1200

1400

10 Gbit 56 Gbit IB

10/14/13 M. Al-Turany, CHEP 2013 Amsterdam 32

ZeroMQ works on
InfiniBand but
using IP over IB

Results

• Throughput of 940 Mbit/s was measured which is very close to the

theoretical limit of the TCP/IPv4/GigabitEthernet

• The throughput for the named pipe transport between two devices on

one node has been measured around 1.7 GB/s

10/14/13 M. Al-Turany, CHEP 2013 Amsterdam 33

Each message consists of digits in one event for one
detector, with size of few kBytes

Message-based Processor

• All message-based
processors inherit
from Device and
operate on messages
without interpreting
their content.

• Four message-based
processors have been
implemented so far

10/14/13 M. Al-Turany, CHEP 2013 Amsterdam 34

Content-based Processor

• The Processor device has at least one input and one
output socket.

• A task is meant for accessing and potentially changing
the message content.

10/14/13 M. Al-Turany, CHEP 2013 Amsterdam 35

Device

• Each processing stage of a pipeline is occupied by a
process which executes an instance of the Device class

10/14/13 M. Al-Turany, CHEP 2013 Amsterdam 36

Sampler

• Devices with no inputs are
categorized as sources

• A sampler loops (optionally:
infinitely) over the loaded events
and send them through the output
socket.

• A variable event rate limiter has
been implemented to control the
sending speed

10/14/13 M. Al-Turany, CHEP 2013 Amsterdam 37

New simple classes without ROOT are used in the
Sampler (This enable us to use non-ROOT clients) and
reduce the messages size.

10/14/13 M. Al-Turany, CHEP 2013 Amsterdam 38

ØMQ Features

• Message blobs of Zero to N bytes

• One socket connect to many sockets

• Queuing sender and receiver

• Automatic TCP (re)connect

• Zero-copy for large messages

10/14/13 M. Al-Turany, CHEP 2013 Amsterdam 39

