Extending the FairRoot
. framework to allow for simulation
~and reconstruction of free
streaming data

Mohammad Al-Turany
Dennis Klein
Anar Manafov
Alexey Rybalchenko
Florian Uhlig
(GSI Darmstadt)

10/14/13 M. Al-Turany, CHEP 2013 Amsterdam 1

__—

What Does it Mean?

* Introduce pipelined data processing to the current
Framework. (This talk!)

* Introduce time based simulation instead of event wise
one. (already shown in CHEP 2012)

* Ideally: Keep compatibility to the current offline

scheme.

10/14/13 M. Al-Turany, CHEP 2013 Amsterdam 2

Start testing
the VMC
concept for
CBM

2004

First Release of
CbmRoot

Panda decided
to join->
FairRoot: same
Base package
or different
xperiments

2006

¥

R3B joined

)

EIC (Electron
lon Collider
BNL)

EICRoot

2010

=

MPD (NICA)
start also using
FairRoot

ASYEOS joined
(ASYEOSRoot)

. Al-Turany,

013 AmSterdam

i

SOFIA
(Studies On
Fission with
Aladin)

:

2012

) 2013

o)
!

GEM-TPC
seperated
from PANDA
branch
(FOPIRoot)

ENSAR-ROOT

Collection of

modules used by
structural nuclear
phsyics exp.

1011

Implementat

FairRoot

e
(o)
O

(a4

A

s

—
(o)
O

(a4
O

ﬁ
(o)

(V)
e
(o)
O

(a4

o0

™

(a4
e
(o)
O

(a4
S

0

O

FopiRoot

AsyEosRoot

PandaRoot

JIYTYETIEYS)
JUSAJ

J0p0343(q
S|nPOow
PIS4
d1uUbPW

- Edl

FairRoot

~9204J494u| 4
+ 196puUDW
(A9iswnind |

Ap|dsiq luaag

e

uolpolddy
W

1ebpubw QO]

=

19bBpupy uny

/

Libraries

WOA
SIUD3D)
DWA ious9

=

piuDa0)

jooud

oA7]
OWIPNLIAL
095 |
991] |
Ol 1004

L)

CHEP 2013 Amsterdam

M. Al-Turany,

10/14/13

Next challenge is: Online vs. Offline or
Online + Ofﬂlne ?

| ‘CPU core

20M Evt/s 4 or EqUIvaIent |
.;GPU FPGA

How to distribute the processes?
How to manage the data flow?

How to recover processes when they crash?
How to monitor the whole system?

1 CPU core :
"or Equwalent
.;f_;_GPU FPGA, .

10/14/13 M. Al-Turany, CHEP 2013 Amsterdam 5

Design constrains . M

* Highly flexible: |
- different data paths should be modeled. _
* Adaptive:

> Sub-systems are continuously under development and improvement

* Should work for simulated and real data:

- developing and debugging the algorithms
* It should support all possible hardware where the algorithms could
run (CPU, GPU, FPGA)

* It hasto scale to any size! With minimum or ideally no effort.

10/14/13 M. Al-Turany, CHEP 2013 Amsterdam 6

FairRoot: Where we are now?

* ROOT event loop
* User code in Task hierarchy
* Task hierarchy runs sequentially in one process

* Tasks implement only algorithms (can be exchanged/replaced)

Parameter
File(s)
Database

y

time tl
10/14/13 M. Al-Turany, CHEP 2013 Amsterdam 7

FairRoot: Where we are going ? (almost there!)

* Each Task is a process (can be Multi-threaded)
* Message Queues for data exchange

* Support multi-core and multi node

Parameter reril Publish parameters

File(s)
Database

(when new ones available)

10/14/13 M. Al-Turany, CHEP 2013 Amsterdam 8

e =

Before Re-inventing the Wheel

* What is available on the market and in the community?
> A very promising package: ZeroMQ is available since 2011

* Do we intend to separate online and offline? NO

* Multithreaded concept or a message queue based one?
- Message based systems allow us to decouple producers from consumers.
- We can spread the work to be done over several processes and machines.

- We can manage/upgrade/move around programs (processes) independently

of each other.

10/14/13 M. Al-Turany, CHEP 2013 Amsterdam 9

* A messaging library, which allows you to design a complex

communication system without much effort
* Abstraction on higher level than MPI (programming model is easier)
* Issuitable for loosely coupled and more general distributed systems
* Multiplatform, multi-language (+30)
* Small (20K lines of C++ code)
* Large and active open source community.

* Open source LGPL free software (large community)

10/14/13 M. Al-Turany, CHEP 2013 Amsterdam 10

/ o

ZeroMQ sockets provide efficient transport options

* Inter-thread oMQ
* Inter-process

inter-process inter-thread

e Inter-node

— which is really just inter-
process across nodes
communication

in-memory

named pipe

PMG : Pragmatic General Multicast (a reliable multicast protocol)
Named Pipe: Piece of random access memory (RAM) managed by
the operating system and exposed to programs through a file descriptor
and a named mount point in the file system. It behaves as a first in first

out (FIFO) buffer

10/14/13 M. Al-Turany, CHEP 2013 Amsterdam 11

The built-in core MQ patterns are:

Request-reply, which connects a set of clients to a set of services.
(remote procedure call and task distribution pattern)
Publish-subscribe, which connects a set of publishers to a set of
subscribers. (data distribution pattern)

Pipeline, which connects nodes in a fan-out / fan-in pattern that
can have multiple steps, and loops. (Parallel task distribution and
collection pattern)

Exclusive pair, which connect two sockets exclusively

l

e | [mee] [nea | | push | | pusu | [pusn | bublisher

PUB
R1, +2, R3 R4 R5, R6 —

|
upd%tes

ROUTER fair queuing
. R1, R4, R5, R2, R6, R3 updf tttttt f tttttt f tes
code ;

bpeEALER | . connect connect connect
—

PULL

M. Al-Turany, CHEP 2013 Amsterdam 12

Subscriber Subscriber Subscriber

Current Status

* The Framework delivers some components which can be connected to
each other in order to construct a processing pipeline(s).
All components share a common base called Device (ZeroMQ Class).

Devices are grouped by three categories:

o Source:

« Data Sampler
- Message-based Processor:

 Sink, Splitter, Merger, Buffer, Proxy
- Content-based Processor:

* Processor

10/14/13 M. Al-Turany, CHEP 2013 Amsterdam

Design

FairMQStateMachine | | FairMQContext FairMGDevice

T AN FANEEVANENVAN £

. FairMQBuffer
FairMQMessage [~ FairMQSamplerTask m—i}FairMQSampler

-fSamplerTask

£

0.1 . .
FairMQProcessorTask ———={ FairMQProcessor FairMQSink

-fTask

FairMQStandaloneMerger

iy
- - FairMQBalancedStandaloneSplitter

Framework
classes that
can be used
directly

Experiment/dete

ctor specific code

10/14/13 M. Al-Turany, CHEP 2013 Amsterdam 14

Integrating the existing software:

' ROOT Files, Lmd Files, Remote event server, ...

FairMQProcessorTask
FairTasks

FairRunA Init() InitQ
FairRootManager i - Re-Init() Re-Init()

Exec() Exec()
Finish() Finish()

Root (Event loop)

10/14/13 M. Al-Turany, CHEP 2013 Amsterdam

FairRoot: Example 3

4 -Tracking stations with
a dipole field

ﬁaﬁow
) 10Kk event: 10 Protons/ev

B) 20k event: 300 Protons/ev

nnstruction:
/Cluster Finder

10/14/13 M. Al-Turany, CHEP 2013 Amsterdam 16

From digits to hits with ROOT:

, e - (oD

RUN CPU Time (s) Memory
(Wall time) (Mbyte)

10k Events, 12 143
10 Protons/event

20k Events, 162 241
300 Protons/event

10/14/13 M. Al-Turany, CHEP 2013 Amsterdam 17

From dig% S to hits with ZMQ T

TClonesArray

Processor
| -
Sampler Sink

10/14/13 M. Al-Turany, CHEP 2013 Amsterdam 18

Test 1: Reconstruction

10k Event 10 Tracks/event

root 11.85s 143MB

processor
processor

10/14/13 M. Al-Turany, CHEP 2013 Amsterdam

Test 1: Reconstruction

20k Event 300 Tracks/event

root 162s 241MB

processor
processor

10/14/13 M. Al-Turany, CHEP 2013 Amsterdam

R——

Test 1: Reconstruction

20k Event 300 Tracks/event

root 162s 241MB
=

32 % events lost !

=
a 0 % events lost !

10/14/13 M. Al-Turany, CHEP 2013 Amsterdam

o]

TClonesArray

=*=

TClonesArray TClonesArray

Processor

Overhead: Copy data from
STL to TClonesArray and
back

M. Al-Turany, CHEP 2013 Amsterdam

Sampler

10/14/13 22

TClonesArray

==

Sampler

10/14/13

i

Processor

M. Al-Turany, CHEP 2013 Amsterdam

o]

TClonesArray

23

Test 1: Reconstruction

20k Event 300 Tracks/event

root 162s 241MB

processor
processor

10/14/13 M. Al-Turany, CHEP 2013 Amsterdam

R——

Test 1: Reconstruction

20k Event 300 Tracks/event

root 162s 241MB
=

0 % events lost !

=
a 0 % events lost !

10/14/13 M. Al-Turany, CHEP 2013 Amsterdam

__— .

Summary

* ZeroMQ communication layer is integrated into our offline
framework (FairRoot).

* On the short term we will keep both options: ROOT based event loop
and concurrent processes communicating with each other via
ZeroMQ).

* On long term we are moving away from single event loop to

distributed processes.

10/14/13 M. Al-Turany, CHEP 2013 Amsterdam 26

Next Step: Design and development of a dynamic
deployment system (DDS)

e STORM is very attractive but no native support for C++ !
* We need to utilize any RMS (Resource Management system)
* Support different topologies and process dependencies

* Device (process) is a single entity of the system
- Each device has its own watchdog process
- Devices are defined by a set of props and rules,

- All devices are statically inherited (should support) 3 interfaces:

IDDSConfig, IDDSStatus, and IDDSLog

Thank you

10/14/13 M. Al-Turany, CHEP 2013 Amsterdam 27

Backup

10/14/13 M. Al-Turany, CHEP 2013 Amsterdam 28

Message format (Protocol)

* Potentially any content-based processor or any source can change
the application protocol. Therefore, the framework provides a
generic Message class that works with any arbitrary and continuous
junk of memory (FairMQMessage).

* One has to pass a pointer to the memory buffer, the size in bytes,
and can optionally pass a function pointer to a destructor, which will

be called once the message object is discarded.

10/14/13 M. Al-Turany, CHEP 2013 Amsterdam 29

Native InfiniBand/RDMA is faster than IP over 1B

User Process

A
User
UDAPL Diagnostics| OpenSM
uverbs API Sockets|Layer umad API
FS] Kernel
—- TCP | UDP [ICMP
Mid Layer P

! T RD DP
22| | Open
@ | | FCoE.

- Fibre -

(Channel

Driver

HCA|Hardware
\ 4 ¢ InfiniBand Fabric
[] Linux

7771 Linux Modules in OFED

Bl OFED
plementing ZeroMQ over IB verbs will improve the
erformance.
10/14/13 M. Al-Turany, CHEP 2013 Amsterdam

30

Fairbase/example/Tutorial3

FairMQDevice
T 0.1 T 0.1
FairMQSampler [~ FairM{QSamplerTask FairMQFrocessor > FairMQProcessorTask
ampler” -{Task
N AN iy
FairM(BalancedStandaloneSplitter < FairMQStandaloneMerger) FairMQFileSink

TestDetectorMQSampler TesthetectorDigiLoader

testDetectorProge

A\ 4

testDetectorSampler fileSink

10/14/13 M. Al-Turany, CHEP 2013 Amsterdam 31

Payload in Mbyte/s as function of message size

1400
1200
1000
800
600
400

200

O

Q%\' Qﬁ& Q)'%\' QS" Qﬁ& @é‘ Q,%& @4& Q;.‘&)& Qﬁ& Qﬁ& @Q' &?
o

Q/

ZeroMQ works on

InfiniBand but W10 Gbit 56 Gbit IB

using IP over IB
10/14/13 M. Al-Turany, CHEP 2013 Amsterdam 32

/\/

Results

* Throughput of 940 Mbit/s was measured which is very close to the
theoretical limit of the TCP/IPv4/GigabitEthernet

® The throughput for the named pipe transport between two devices on

one node has been measured around 1.7 GB/s

Each message consists of digits in one event for one

detector, with size of few kBytes

10/14/13 M. Al-Turany, CHEP 2013 Amsterdam 33

__— ol

Message-based Processor FaitMQDevice
i AN AN AN

« All message-based
processors inherit FairtMQBuffer
from Device and
operate on messages
without interpreting
their content.

FairMUSink

FairMQStandaloneMerger

* Four message-based
processors have been
implemented so far

FairMQBalancedStandaloneSplitter

10/14/13 M. Al-Turany, CHEP 2013 Amsterdam 34

Content-based Processor

« The Processor device has at least one input and one
output socket.

A task is meant for accessing and potentially changing
the message content.

FairMOProcessor

FairMQProcessorTask
Ifa'lr;ﬂrﬂrsﬂzr;:r::;::;grﬂ + FairMQProcessorTask()
+ SetTask(task : FairMQProcessorTask®) d i:n;SIrMQPrncessurTaskl:]
+ Init
+ SLEH + Exec{msg - FairliQlMessage’)

10/14/13 M. Al-Turany, CHEP 2013 Amsterdam 35

Device

« Each processing stage of a pipeline is occupied by a
process which executes an instance of the Device class

FairMQStateMachine

+ FairMQStateMachine()
+ Init()

+ Bind()

+ Connect()

+ Runf)

+ Pausef)

+ Shutdovn()

+~ FairlQStateMachine()

FairMQSocket

+TCP : TString
+IPC : TString
+INPROC : TString

FairMQConfigurable

+ FairMQConfigurable()
+ SetProperty(key : Int_t, value : TString, slot : Int_t)

+ SetProperty(key : Int_t, value : Int_t, slot : Int_t)
+ GetProperty(key : Int_t, default_: Int_t, slot : Int_t) : Int_t
+~ FairMQConfigurable()

+ GetProperty(key : Int_t, default_ : TString, slot : Int_t) : TString

+ FairMQSocket(context : FairlMQContext®, type
+~ FairM@Socket()

+ Getld() : TString

+ GetTypeStringitype : Int t) : TString

+ Send(msg : FairMQMessage®) : Bool_t

+ Receive(msg : FairMQMessage™) : Bool_t
+ Close()

+ Bind(address : TString) : Bool_t

+ Connect(address : TString) : Bool_t

+ GetSocket() : zmg::socket_t*

+ GetBytesTx() : ULong_t

+ GetBytesRx() : ULong_t

+ GetMessagesTx() : ULong_t

+ GetMessagesRx() : ULong t

s Int_t, num : Int_t)

FairMQDevice

FairMQContext

+ PAYLOAD : TString

+LOG : TString
e me——
+ CONFIG : TString
+ CONTROL : TString

+~ FairMQContext()
+ Getld() : TString

FairMQMessage

+ FairMQMessage()

+~ FairMOMessage()

+ GetMessage() : zmg:message_t*

+ Size() : Int_t

+ Copy(msg : FairlMlQMessage®) : Bool_t

+ FairMQMessage(data_ : void*, size_ : size_t, fin_: zmg::free_fn*, hint_: void®)

10/14/13

+ Close()

+ FairMQContext(deviceld : TString, contextld : TString, numloThreads : Int_t)

+ GetContext() : zmg:: context_t*

-instance| 0.1
FairMQLogger

+ FairMQLogger()

+ FairMQLogger(hindAdress : TString)

+~ FairMQLogger()

+ Log(type : Int_t, logmsg : TString)

+ Getlnstance() : FairMi@Logger*

+ Initinstance(bindAddress : TString) : FairlMQLogger*

M. Al-Turany, CHEP 2013 Amsterdam

36

——

Sampler

« Devices with no inputs are

« A sampler loops (optionally:
infinitely) over the loaded events

10/14/13

| FairMQSampler

+ FairMQSampler()

+~ FairMQSampler()

+ Init()

+ Run()

+ Log(intervallnMs : Int_t)

+ ResetEventCounter() : void®

+ callResetEventCounter{arg : void*) : void*

+ SetProperty(key : Int_t, value : TString, slot : Int_t)

+ GetProperty(key : Int_t, default : TString, slot : Int_t) : TString
+ SetProperty(key : Int_t, value : Int_t, slot : Int_t)

+ GetProperty(key : Int_t default :Int t slot: Int t): Int t

categorized as sources

FairMQSamplerTask

+ FairfvQSamplerTask()

+~ FairMQSamplerTask()
+ Init) : InitStatus
+ Exec(opt : Option_t*)

+ FairMQSamplerTask(name : const Text_t*, Verbose : Int_t)

+ SetBranch(branch : TString)
0.11]+ SetMessageSize(size : Int_t)
—————————— .

fSamplerTask [+ GetOutput) : std::vector< FairlMiGMessage * =*

£ iy

and send them through the output -

socket.

A variable event rate limiter has

been implemented to control the

sending speed

M. Al-Turany, CHEP 2013 Amsterdam

iy £

37

e

New simple classes without ROOT are used in the
Sampler (This enable us to use non-ROOQOT clients) and

reduce the messages size.
PndPayload::TimeStamp

| |

+ fTimeStamp : Double_t
+ fTimeStampError : Douhle_t

PndPayload::SttHit PndPayload::SdsDigi | | PndPayload::MdtHit
+ flsochrone : Double_t + fDetlD : Int_t + fStriplD : Short_t
+ flsochroneError : Double_t | | + fSensorlD : Int_t + fStripIndex : Int_t
+ fPulse : Double_t +fFE : Int_t
+ f0epCharge : Double t + fCharge : Double_t
+ fTubelD : Int_t 7

.PﬂdPﬂ}"lﬂﬂd::SdEDigiPi!El- PﬂdPﬂH’lDﬂdeEDlglstﬂP

+fCol : Int_t + fChannel : Int_t
+ fRow : Int_t

10/14/13 M. Al-Turany, CHEP 2013 Amsterdam 38

OMQ Features

* Message blobs of Zero to N bytes

* One socket connect to many sockets
* Queuing sender and receiver

* Automatic TCP (re)connect

* Zero-copy for large messages

10/14/13 M. Al-Turany, CHEP 2013 Amsterdam

39

