User Centric Monitoring - a
redesign and novel approach
in the STAR experiment

D. Arkhipkin

J. Lauret
J. Zoulkarneeva

ol
BROOKHEUEN

NATIONAL LABORATORY

Outline

User-Centric Monitoring — Grid/Cloud Logger and Complex Event
Processing

1. Application Message Logger Framework for distributed job
processing (Grid & Cloud)

2. Complex Event processing — proof of principle in online
MetaData filtering context

3. Summary and outlook

‘weptalswy ‘€T0¢ 8T-¥T 49903100 ‘€T0CdIHD

-
S
=
D
o
]
¥
oQ
>
I
—
rD\
—
(@)
=
D
—
Q
C
=
M
(s
—h
@)
=
—+
-
D
Q
c
—+
>
@)
=
wn

APPLICATION MESSAGE LOGGER
FRAMEWORK FOR DISTRIBUTED JOB
PROCESSING (GRID & CLOUD)

User Centric Monitoring - UCM

* User-centric monitoring idea: serve a rich set of intuitive job and
application monitoring information to scientists so that they can be
more productive

e Started as an SBIR in 2007 - D.A. Alexander, C. Li, J. Lauret, V. Fine
“User Centric Monitoring (UCM) Information Service for the Next
Generation of Grid-enabled Scientists”, CHEP 2007 proceedings, J.
Phys. Conf. Ser. 119 052001 do0i:10.1088/1742-6596/119/5/052001
(2008)

* Project came short on deliverables — UCM logger (appender) handled
local caching of messages + push to a DB

* In//, STAR investigated the use of AMQP online - D Arkhipkin, J
Lauret, W Betts, G Van Buren — “Online Meta-data Collection and
Monitoring Framework for the STAR Experiment at RHIC”, J. Phys.:
Conf. Ser. 396 012002 doi:10.1088/1742-6596/396/1/012002 (2012)
Full use in RHIC Run 13

* “Cloud Logger” idea was revived ...

-
2
=
D
o
]
¥
oQ
>
1
—
DN
—
(@)
=
D
—
Q
C
=
M
(s
—h
@)
=
—+
-
D
Q
c
—+
>
@)
=
wn

‘weptalswy ‘€T0¢ 8T-¥T 49903100 ‘€T0CdIHD

http://iopscience.iop.org/1742-6596/119/5/052001
http://dx.doi.org/10.1088/1742-6596/119/5/052001
http://dx.doi.org/10.1088/1742-6596/119/5/052001
http://dx.doi.org/10.1088/1742-6596/119/5/052001
http://dx.doi.org/10.1088/1742-6596/396/1/012002
http://dx.doi.org/10.1088/1742-6596/396/1/012002
http://dx.doi.org/10.1088/1742-6596/396/1/012002

Il L
o 1 Illl .
—— H] :
Browser Broker Gateway
ACcess N /
[-'.‘.'crker
Submit Task [——— N Submit Job =
/ cheduler
Tracking Uthsk Run | Tracking Library
Requested Log
nto |
Portal Job Wrapper
- \ Tracking Library
UCM Portlet
] GRAM Updator
Archiver
< HH Local
F""!lﬁ/ Grid Site IlIl Database
T g Library Fire Wall I!I!

Evolution to a Grid/Cloud Logger

* Implements an extended and reworked version of the User-Centric
Monitoring Model

Upgraded UCM framework (a.k.a CloudLogger)
* set of logging interfaces

* reliable messaging bus

* aschema-free database backend

* a Web interface to present logged information to users in a user-
centric view rather than and administrative-centric point of view

Primary features:
* Multi-tier architecture allows scalability and easier maintenance

* New schema-free database backend ensures smooth upgrades in a
future

* Full support of the Grid/Cloud usage and external site logging

* Improved Ajax-based user interface, which allows to track jobs
performance via automatic job statistics gathering and
histogramming

-
2
=
D
o
]
¥
oQ
>
1
—
DN
—
(@)
=
D
—
Q
C
=
M
(s
—h
@)
=
—+
-
D
Q
c
—+
>
@)
=
wn

‘weptalswy ‘€T0¢ 8T-¥T 49903100 ‘€T0CdIHD

Design overviews

Submit Task {(many Jobs)

Send to the Cloud

Visualize
progress

Process
and store

Log: AMQP

Message hierarchy

* Leverages the UCM lesson learn : Structured properties into three categories: user task
level, job level, and job event level

* Directly translates to our data store collections: Tasks, Jobs, Events.

* Document-based storage allows in-place updates for event messages, job status and task
parameters..

* Structures presented in JSON format — native to db backend and web services

* Important note — messages are not only “text” but key:values
* Some key:values are used to display process information (memory consumption, CPU time, ...)
* Web front end can collect all info and display

‘weptalswy ‘€T0¢ 8T-¥T 49903100 ‘€T0CdIHD

-
2
=
D
o
]
¥
oQ
>
1
—
DN
—
(@)
=
D
—
Q
C
=
M
(s
—h
@)
=
—+
-
D
Q
c
—+
>
@)
=
wn

Task:

{

. “task_id” < o
“broker tas! '{JOb iEvent'
“broker id™:]

‘requester_| ,JOP_1d ”'ﬁasmgn “task_id": <>,

“gize™ <nun task_id" <task_ “job_id" <>,

“site_locatig stage_id™ ‘:SUb" ‘messages”: |
“submissior “ts_submit_local { “mtime”; <timestamp>,

“description; “ts_submit_ cloug “context” <val>,
 “messages’ “execution_node ==§3gﬁ-‘gd:ld>’
K } messages™ [{ L *message”: {"key1”: valuel,.. “keyN": valueN}
o

}] Allows msg=“hello world” but also CPUtime=12sec, ...

1480

1350 oo 8 e e e 8 o v e : sanple channel 2 H Unltage > *urrgﬂtE —— |
1388 - : : : : :
1O%E --ccceeieeierrannaans Pessssrsassssssssasses Prsssssssssasssssanses brsssssssssassssssanes L
1288 - ; ; ; : : F
1158 - : : : ; ;
1180 b - < - < - e Verrrrenrer o Lo
1858 - -" : -
1B@@ —f--cccceceesesesasnans | PR | B PP T Y Y SCCTTCITPCTLETE TETCITY ETTETTTETPeTY L
g958 - ; r
988 - 3 : : -
BBA qecccscscassssancansas | (A | R —— R R —— R e T TR SETEEES L L
888 - . -
ri B LR LT T T — I e e | L
7Ba -
658 -+ :
BBE - sscccssssasansas T o e e - L
2o8 - B
1o i TR R R e N NN N RN L
458 - i r
488 - :
ks i T T | s . L
380 -+ o
Pl ¢ S TR O A | R | | N YA E | B R L
280 - HE
150 - :
188 —------------ee--iee-- [R I L B TR e E T T T I T r T . L
58 - : W‘I B
] T T T T
%o &2 o] o2 &2 =] =]
E T E T E T E S E T E S E Ty
28 28 28 28 28 28 28
& & & & & & &

Tine. EDT = BHL tine

Component refactoring

1

]

STAR JOB Web Service
<<component>> EI <<component>> a <<component>> a
Framework Core Submission Handler Client Handler
: |
\4 A4
StMessMgr <<component>> a
\I'/ MongoDB
<<component>> <<component>> A
Logger Core # _OD_ StCloudAppender 2] ' =3
L SON
appenderSkeleton A <<service>> El O]
| ~\ MQ 2 DB
<<component>> g O 7
StCloudLogger JSON I <<component>> a]
\:/ Web UI
<<service>> E]
O Message Bus

May use the messaging protocol or may skip it and use http (if possible)
Apache qpid used as message broker to ensure messages reach their destination

-
S
)
D
o
]
¥
oQ
>
I
—
rD\
—
(@}
=
D
—
Q
C
=
M
(s
—h
@)
=
—+
-
D
Q
c
—+
>
@)
=
wn

‘weptalswy ‘€T0¢ 8T-¥T 49903100 ‘€T0CdIHD

Web front-end

* Three-column layout: tasks, jobs, events — dynamically populated
upon request

* Virtually no data conversion happens, as both web client and
database backend are using JSON (BSON) internally

* Features embedded search filters, automatic histogramming and
more!

[Lagout drmitry]

‘weptalswy ‘€T0¢ 8T-¥T 49903100 ‘€T0CdIHD

-
2
=
D
o
]
¥
oQ
>
1
—
DN
—
(@)
=
D
—
Q
C
=
M
(s
—h
@)
=
—+
-
D
Q
c
—+
>
@)
=
wn

search all fields | F||te rS search al fields = | FILTER search &l fields = | FILTER
L@ERO [+ %O [Histoarsz HBO
el o) Hlstograms ¢
rrikr ¥ TEST TASK MAME r||.-uqu:__-__- & EMULATED-JOR-ID-) e TRACE Fri Aug 03 2012 14:25:30 GMT-0200 (E0T) \‘
L4.28 33 or.ean (eor) B SCHEDULER-37-1 iR~ e EE AN STATUS TEST EVENT CONTEXT
[10] TEST TASK DESCRIPTION 20% TEST_JCB_ID_BROKER ! TEST_1D8_ID_GRID . = =
BNL/RCF ' rcass023.rof.rhic.bnl.gov | star_long | 1000 ram_rss kb : 108E| random_39 © value 47 system tise - 0
_ - SUEMITTED: Fri Aig 03 2012 143638 GNT-0400 [EDT)
dr:'lull:r',:: EST TASK NAME 1days ago P & STARTED: 1 days ego JOB 15 RUNNIN bepuc i fug 03 2012 14:26: 30 GMT-0400 (EDT)
LAST UFDATE: 3 days ago -
[lU] TEST TASK DESCRIPTION a0, START TEST EWENT COMTEXT
i Cl ient-based data processi ng —
dmitry TEST TASKNAME _____ P S = | [[|
EMLIL i TEST 108 IZ. BROKE FTEST JOO D GRIC R]-11' 0400 (Z0T)
[10) TEST TASK - Tas k S i 90% EBNLRCF reasdll3rclorhic.bal.gow | star_lang 1000 EEL ST."‘\TUQ Eve nts

R, < SUBMITTED. Fri Aug 03 2012 14 :256:29 GHT-0400 [EDT) ram rss kb 1093 am-;'-nrii--_li‘i-ﬂ-B_“ﬂTFldnm 38 : value 49

i’ I 5 p— - ETARTED: 3 cays ago JOB 15 RUANING - =
Sy TEST TASK NAME LUL L RS LAST UPDATE: 3 days age user_time - 0
[10) TEST TASK DESCRIPTION 50%

EMULATED-JOB-ID L ' STAGETN NOTICE Fr Aug 03 2012 14:36:30 GHMT-0€00 (E0T)

e SCHEDULER-27-3 .———-————— L START TEST EVEMT COMTEXT
dmitry TEST TASK NAME 1 days 2g0) 6 — mom DF. + I' o
5T_1C8 R

Famh e ~ B B BNL p 'F : Be G072 Jobs |“ lang | 100 random_1 : walue 7
[10] TEST TASK DESCRIPTION 1%

SUBMITTED. Fri/ ut3'x.m__..._., 0400 [EDT

STARTED: 1 doyx ngo IOH 15 RLINKING NOTICE Fii Aug 03 2012 142630 GHT-0400 (E3T)
dmitry TEST TASK NAME 3days aga [€5 | = ||| LAST UPDATE: 3 days age = START TEST EVENT CONTEXT []

TASKS JOBS EVENTS

Written by Dmitry Arkhipkin, BNL 2012

Performance and scaling

Key factors: (1) messaging broker throughput (2) web service scalability (3)
database backend scalability

* Messaging bus performance and scaling

* Depends on AMQP implementation.
We use gpid daemon, supported by Red Hat, with up to a ~ million messages per
second throughput on a tuned system, or

* STAR requirements are fully satisfied as our demands are modest:
For 5k jobs up to 10,000 messages/sec on average, with peaks at ~50,000
messages/sec
Even a growth by x50 would still be fine on our tuned system

‘weptalswy ‘€T0¢ 8T-¥T 49903100 ‘€T0CdIHD

-
2
=
D
o
]
¥
oQ
>
1
—
DN
—
(@)
=
D
—
Q
C
=
M
(s
—h
@)
=
—+
-
D
Q
c
—+
>
@)
=
wn

* Web Service scaling

* Allows flexible scaling by adding web servers on demand, presumably utilizing
load-balancing front-end router

* Database performance and scaling

* Assuming in-place updates most of the time, and automatic partitioning across
working nodes (sharding) of the MongoDB we do not see any constrains on the db
backend side for both writes and reads

Scaling

Web Service scaling: clustering

. ‘_;_..
Load Balance-r\—’ ~

2

HTTP
User Requests

Database backend scaling: sharding

Shard 1
* P
MongoDB
—l — " replica sets
-y
Log Processing {) Shard N
Service

Mongo Routers

sharding = horizontal partitioning.
Ex: db can be split by taskID (many jobs, event more messages)

-
2
=
D
o
]
¥
oQ
>
1
—
DN
—
(@)
=
D
—
Q
C
=
M
(s
—h
@)
=
—+
-
D
Q
c
—+
>
@)
=
wn

‘weptalswy ‘€T0¢ 8T-¥T 49903100 ‘€T0CdIHD

COMPLEX EVENT PROCESSING -
PROOF OF PRINCIPLE IN ONLINE
METADATA FILTERING CONTEXT

General idea

* For any “events” (messages or online MetaData)
* Event is created (various data sources)
* Event is distributed to clients (pushed to MQ)
* Event is stored (db, memcache) and/or visualized

* Then, event(s) is/are read from database, matched to other events
from the same or different db, processed and analyzed by custom
scripts — Not really “integrated” ... but it works ...

* We could do better
Event streams need to be processed simultaneously and be acted
upon to discover event correlation, relationship and patterns

‘weptalswy ‘€T0¢ 8T-¥T 49903100 ‘€T0CdIHD

C
2
=
(9]
o
(D
.
oQ
)

1
—
(D~
—
(@)
3
M
—
Q
(=
-
D
—t
—h
@)
-
~t
-
M
Q
(-
—t
>
@)
-
wn

Essentially, we needed to add multi-stream, multi-event processing
capabilities to STAR message/event collection processing system

CEP = Complex Event Processing

What is Complex Event
Processing (CEP) ...

* Complex Event Processing (CEP):
e operates on continuous streams of data coming from many sources
* understands and manages stream relations (time based, relational syntax, ...)
* can handle high event rate
* Able detects patterns in data
* produces output event streams or individual events

* CEP service includes:
* input/output data broker (MQ, REST, WS)
* event processing engine (persistent queries)
* stream manager (add/remove sources on a fly)
* query manager (add/remove queries on a fly)

‘weptalswy ‘€T0¢ 8T-¥T 49903100 ‘€T0CdIHD

-
2
=
D
o
]
¥
oQ
>
1
—
DN
—
(@)
=
D
—
Q
C
=
M
(s
—h
@)
=
—+
-
D
Q
c
—+
>
@)
=
wn

* STAR applications:

* unify stream data processing, provide single interface for subsystem experts
keeping same three-tier schema

* allow controlled experiment workflow: shift leader hints, experiment run-
time tasks orchestration, alarms etc..

Where doe sit fit? Online
example

Data Provider Layer

<<sme>:> a <<s;vlcicse>> a <<SEBUEE$>> a <;s:rr|v“i:s::-> a
|

N |

: <<service>> g “ <<component>>
Pre-existing Message Bus / AMQP Complex Event Processor

infrastructure
| Data Adapters Layer New component!

<<component>> El <<component>> El
MQ 2 DB MQ 2 Memcached

Backend Storage Layer

<<database>> <<database>> <<service>> a
MySQL MongoDB Memcached

Presentation Layer

<<webserver>>

Apache

Use-case - online collection of
events / meta-data

Email
Notification

: | Check signal
T"'QQEI' _______ "physics ON"
Autnremvery ificati h
<<Include> L2 K

Subsystem Expert ,c‘{Extend::v-}

<<Include>>
Mlgrate Data to

Oﬂ’lme DB

{{Extend}} ' z<Include>=>

@ < <Exte nd p >
Sture Datato OnlineDB - _ ____ Check Data Sanity
<<Extend>>

STAR Subsystem services located in online domain depend on
other subsystem states including Trigger, DAQ and the data
exported from collider run-time systems..

-
S
=
D
o
]
¥
oQ
>
I
—
rD\
—
(@)
=
D
—
Q
C
=
M
(s
—h
@)
=
—+
-
D
Q
c
—+
>
@)
=
wn

‘weptalswy ‘€T0¢ 8T-¥T 49903100 ‘€T0CdIHD

Middleware

* WSO02 Complex Event Processor (CEP) ”... is a lightweight and easy-
to-use, 100% open source middleware product, available under
Apache License v2.0. WSO2 CEP identifies the most meaningful
events within the event cloud, analyzes their impacts, and acts on
them in real time. It's built to be extremely high performing and
massively scalable..”

* The Complex Event Processor consists of the following components:
CEP Core, Broker Core, Broker Manager.

* CEP Core contains CEP Buckets which are instances of back-end CEP
runtime engines (Esper, Fusion, Siddhi) that process events, and
Data Converters for converting events from Map, XML, and Tuple
types to back end CEP engine's event type. Total processing on
received events and triggering of new events happen at the back
end CEP runtime engine of each bucket.

* There are four types of brokers which are Local, WS-Event, JMS/IMS-
gpid and Agent. These brokers are responsible for receiving and
publishing event on Thrift, SOAP, REST, and JMS transports.

‘weptalswy ‘€T0¢ 8T-¥T 49903100 ‘€T0CdIHD

-
2
=
D
o
]
L2
oQ
>
1
—
(D~
—
(@)
=
@]
—
Q
c
=
M
—
—h
@)
=
—~
-
@]
Q
c
—
>
@)
=
wn

Summary & Outlook

* Cloud Logger
* Refactored and redesigned UCM toolkit

* Scalable multi-tier architecture, based on a combination of
messaging infrastructure and RESTful service approach — designed to
work everywhere from intranet to the large Cloud installations

* Improved web interface, schema-free database backend

* Complex Event Processing
* CEP capability has been integrated into STAR Online

* Event Processor is plugged into the existing Message-Queuing bus,
no extra hardware required

* Allows to employ stream processing technigues in online domain,
starting with basic error detection and notification features to
acquire experience

* Such processing could also be used to detect issues in user
processing tasks (WiP)

‘weptalswy ‘€T0¢ 8T-¥T 49903100 ‘€T0CdIHD

-
2
=
D
o
]
¥
oQ
>
1
—
DN
—
(@)
=
D
—
Q
C
=
M
(s
—h
@)
=
—+
-
D
Q
c
—+
>
@)
=
wn

