
Keyword Search over Data Service Integration for Accurate Results
Vidmantas ZemlerisVilnius University, Lithuania

vidmantas.zemleris@cern.chon behalf of CMS Collaboration
Valentin KuznetsovCornell University, USA
vkuznet@gmail.com

Summary
Virtual data integration aims at providing a coherent interface for querying heterogeneous datasources (e.g. web services, proprietary systems) with minimum upfront effort in integration. Datais usually accessed through structured queries, such as SQL, requiring to learn the language andto get acquainted with data organization, which may pose problems even to proficient users.We present a keyword search system, which proposes a ranked list of structured queries alongwith their explanations. It operates mainly on the metadata, such as the constraints on inputsaccepted by services. It was developed as an integral part of the CMS data discovery serviceand is currently available as open source.

Context: a system for Virtual Data Integration

DAS

DB
back-end

JSON Document
{site_name:AAA,

nfiles:1}

DAS Document
site=AAA,

nfiles=1, n_disk=5

Mappping
DB

user

XMLDocument
<SiteName>AAA</SiteName>

<nDisk>5</nDisk>

http
://a

.b.com/se=AAA
http://c.com/site_name=AAA

query: site=AAA

JSON

JSON
DAS
cache

Analytics
DB

Mongo DB

data-
provider

data-
provider

Figure 1: DAS workflow

”CMS Data Aggregation System” (DAS):
• accepts simple structured queries
• integrates heterogeneous services
→ parse the query
→ contact services
→ eliminate inconsistencies in the responses:∗ entity naming∗ data formats (XML, JSON)
→ combine the responses
• requires only minimal service mappings
→ no predefined schema
→minimal effort in defining services

Queries must specify: entity to be retrieved and filtering criteria. Optionally, the results can be further filtered, sorted or aggregated
dataset dataset=*RelVal* | grep dataset.nevents >1000 | avg(dataset.size), median(dataset.size)

conditions as
service *inputs*

filters and projections
on service *outputs*

aggregatorsentity requested
from services

still, it is overwhelming for users to:

• learn the query language
• remember how exactly the data is structured and named
Could keyword queries solve this?

still, it is overwhelming for users to:

• learn the query language
• remember how exactly the data is structured and named
Could keyword queries solve this?

Interpreting Keyword Queries: Problem definition
Input: query, KWQ=(kw1, kw2, .., kwn)ambigous; nearby keywords are often related
Task: translate it into structured querymade of tagj ∈ domain terms: entities and their values, unknown, operators
Given: metadata only:
• names of entities and their attributes

service inputs or their output fields
• possible values (only for some inputs)
• constraints on data-service inputs:
→mandatory inputs
→ regular expressions on values

Example. Consider this query: average size of RelVal
datasets with its number of events > 1000
• average RelVal dataset size nevents>1000
• avg(dataset size) RelVal “number of events”>1000
For all, the expected result is:

Example. Consider this query: average size of RelVal
datasets with its number of events > 1000
• average RelVal dataset size nevents>1000
• avg(dataset size) RelVal “number of events”>1000
For all, the expected result is:

Keyword search overview

1. tokenize the query
• clean up
• identify patterns2. identify and score “entry points”
• score matchings of individual keywords intodomain terms with techniques of entitymatching and information retrieval3. combine entry points to obtain final score
• consider various permutations “keyword la-bellings”
• promote ones respecting keyword depen-dencies or other heuristics
• interpret as structured queries4. present structured query suggestions rankedaccordingly

(Partial) containment in
Known Values

Recursive generation of
candidates

prune-out invalid results
(e.g.not supported by
services)

1. Regexp-based
Tokenizer

2. Entry point generation and scoring

API input constraints
(regular expressions)

service input names:
via string similarity

Bootstrapped
input values

Bootstrapped
structure of
service outputs

3. Candidate search and scoring

Scoring: heuristics promoting
context

entry points: potential term matchings with scores

Result
Presentation

Input Query

service output fields (dirty):
use Information Retrieval
techniques

match Schema terms: match Values terms:

Get this and more:

Challenges
• keyword queries are ambiguous → return ranked list of structured query suggestions
• querying services is “expensive” → rely on metadata
→ bootstrap list of allowed values (available only for some fields)
→ rely on regexps with lower confidence (can result in false positives)
• no predefined schema
→ bootstrap list of fields in service results through queries
→ some field names are unclean → use IDF (as they come directly from JSON/XML responses)

The ranker
Based on exhaustive search:
• allows easily finding optimal solutions, vs. complex methods that’d require post-pruning
• early pruning - filter out many “invalid” candidates e.g. not yet supported by services
• our schema is quite small
→ cython-based implementation is quite fast (mostly bound by MongoDB and Whoosh IR to get entry points)

final score = |KW Q|∑
i=1

log(scoretagi|kwi

) + ∑
hj∈H

hj(tagi|kwi; tagi−1,..,1)


scoretagi|kwi - likelihood of kwi to be tagi (from entry points step)
hj(tagi|kwi; tagi−1,..,1) - the score boost returned by contextualization rule hj given the tag(s) nearby.
Our finding: summing log-likelihoods is better than plain scores (cf. Keymantic)

Scoring function

Related works
• The “Keymantic” - keyword search over databases or data services (the closest work)1. score keyword mappings individually (entry points)2. solve “weighted bipartite assignment” (kwi→ tagj) with contextualizations:
→maximize total sum of weights, selecting each tag only once
→ uses contextualization rules to account for keyword interdependencies∗ e.g. <table_name> <its attribute>; <attribute> <its value>;∗ solves it approximately with Munkres algorithm modified to consider contextualizations:· contextualize - modify weights of kwi → tagj , if tagj is “related” to earlier sub-assignments· to get multiple results, repeat recursively forcing/preventing certain sub-assignments3. interpret generated mappings as SQL queries

• The “KEYRY” - uses HMM (Hidden Markov Model) to label keywords as schema terms
→ HMM’s initial parameters can be estimated from similar heuristics as above
→ later machine learning can be used (if logs available)

Autocompletion to ease typing the queries (prototype)

Tokenized query (intermediary result):’relval’, ’number’, ’of’, ’events>100’
Entry points (intermediary result):
RelVal → (1.0, input-value: group=RelVal)

RelVal → (0.7, input-value: dataset=*RelVal*)

’number of events>100’ → (0.93, output-filter: dataset.nevents>100)

’number of events>100’ → (0.93, output-filter: file.nevents>100)

... and some more with lower scores...

Future work
• improve autocompletion prototype
• improve the ranker
• generic ways to improve services’ performance, e.g. materialized views with incremental refresh

top-k (semi-)optimal bipartite assignments with Contextualization?
• could Murty’s/Munkres’s algorithms which list top-k optimal assignments be adapted towork with contextualizations?
→ if so, this shall at least guarantee optimal top-k for with some contextualization
→ out of scope, ask for handouts/chat

Problems with the HMM approach:
•what is modelled is not necessarily same as seen by user
→models kwi→ tagj , while user sees structured queries
→ therefore, hard to automatically collect training data

Open problems & ideas

