
Computing on Knights and Kepler Architectures
G Bortolotti, M Caberletti, G Crimi, A Ferraro, F Giacomini, M Manzali, G Maron,

M Pivanti, D Salomoni,S F Schifano, R Tripiccione, M Zanella

Sebastiano Fabio Schifano

University of Ferrara and INFN-Ferrara

20th International Conference on Computing in

High Energy and Nuclear Physics

October 14-18, 2013

Amsterdam, The Netherlands

S. F. Schifano (Univ. and INFN of Ferrara) Compunting on K-architectures CHEP October 14-18, 2013 1 / 23

The emergence of accelerators

Use of accelerator based systems is today a common option for HPC.

S. F. Schifano (Univ. and INFN of Ferrara) Compunting on K-architectures CHEP October 14-18, 2013 2 / 23

Why are they interesting ?
Xeon E5-2687 Tesla K20X Xeon-Phi 7120P

#physical-cores 8 14 SMX 61
#logical-cores 16 2688 244
clock (GHz) 3.1 0.735 1.238
GFLOPS (DP/SP) 198.4/396.8 1.317/3.950 1.208/2.416
SIMD AVX 64-bit N/A AVX2 512-bit
cache (MB) 20 1.5 30.5
#Mem. Channels 4 – 16
Max Memory (GB) 256 6 16
Mem BW (GB/s) 51.2 250 352
ECC YES YES YES

1 Tflops in one device 4

nothing is for free 8

I manage high number of threads
I exploit several levels of parallelism
I hide latency host-device (Amdhal law)

S. F. Schifano (Univ. and INFN of Ferrara) Compunting on K-architectures CHEP October 14-18, 2013 3 / 23

The INFN COKA project
originally Computing On Knights Architectures

today Computing On K-Architectures to include also GP-GPUs

Architectures:

“classic” multi-core

Many-core: GPUs, Xeon-Phi (MIC)

low-power systems

Goals:

investigate performance of multi- and many-core processors

assess programming methodologies

Focus
In the rest of the talk I focus only on benchmarking MIC-based systems using
a LBM code.

S. F. Schifano (Univ. and INFN of Ferrara) Compunting on K-architectures CHEP October 14-18, 2013 4 / 23

LBM at glance
Lattice Boltzmann method (LBM) is a class of computational fluid
dynamics (CFD) methods.

Simulation of synthetic dynamics described by the discrete Boltzmann
equation, instead of the Navier-Stokes equations.

The key idea:
I a set of virtual particles called populations arranged at edges of

a discrete and regular grid
I interacting by propagation and collision reproduce – after

appropriate averaging – the dynamics of fluids.

relevant features:

I “Easy” to implement complex physics.
I Good computational efficiency on MPAs.
I Useful tool to investigate performances of processors.

S. F. Schifano (Univ. and INFN of Ferrara) Compunting on K-architectures CHEP October 14-18, 2013 5 / 23

The D2Q37 Lattice Boltzmann Model at Glance
Lattice Boltzmann method (LBM) is a class of computational fluid
dynamics (CFD) methods

simulation of synthetic dynamics described by the discrete Boltzmann
equation, instead of the Navier-Stokes equations

a set of virtual particles called populations arranged at edges of a
discrete and regular grid

interacting by propagation and collision reproduce – after appropriate
averaging – the dynamics of fluids

D2Q37 is a D2 model with 37 components of velocity (populations)

suitable to study behaviour of compressible gas and fluids optionally in
presence of combustion 1 effects

correct treatment of Navier-Stokes, heat transport and perfect-gas
(P = ρT) equations

1chemical reactions turning cold-mixture of reactants into hot-mixture of
burnt product.

S. F. Schifano (Univ. and INFN of Ferrara) Compunting on K-architectures CHEP October 14-18, 2013 6 / 23

Computational Scheme of LBM
foreach time−step

foreach lattice−point
propagate () ;

endfor

foreach lattice−point
collide () ;

endfor

endfor

Embarassing parallelism
All sites can be processed in parallel applying in sequence propagate and
collide.

Challenge
Design an efficient implementation to exploit a large fraction of available peak
performance.

S. F. Schifano (Univ. and INFN of Ferrara) Compunting on K-architectures CHEP October 14-18, 2013 7 / 23

D2Q37: propagation kernel

require to access neighbours cells at distance 1,2, and 3

generate memory-accesses with sparse addressing patterns

This kernel is strongly memory-bound.

S. F. Schifano (Univ. and INFN of Ferrara) Compunting on K-architectures CHEP October 14-18, 2013 8 / 23

D2Q37: boundary-conditions

we simulate a 2D lattice with
period-boundaries along x-direction

at the top and the bottom boundary
conditions are enforced:

I to adjust some values at sites
y = 0 . . . 2 and y = Ny − 3 . . .Ny − 1

I e.g. set vertical velocity to zero

This step (bc) is computed before the collision step.

S. F. Schifano (Univ. and INFN of Ferrara) Compunting on K-architectures CHEP October 14-18, 2013 9 / 23

D2Q37: collision kernel

collision is computed to each lattice-cell

computational intensive: for the D2Q37 model, and
requires > 7600 DP operations

completely local: arithmetic operations require only the populations
associate to the site

This kernel is strongly compute-bound.

S. F. Schifano (Univ. and INFN of Ferrara) Compunting on K-architectures CHEP October 14-18, 2013 10 / 23

Optimizations relevant for Xeon-Phi performances

P = f × #cores× NopPerCycle× NflopPerOp

core parallelism:
the lattice is split among the 61 CPU-cores;

hyper-threading:
each core runs 2-4, threads to keep hardware pipelines busy and hide
memory accesses latency;

vector programming:
each core process several sites in parallae data-set using vector
(streaming) instructions (SIMD parallelism); in the case of Xeon-Phi
up-to 8 double-precision values can be processed by each vector
instructions.

S. F. Schifano (Univ. and INFN of Ferrara) Compunting on K-architectures CHEP October 14-18, 2013 11 / 23

Single-MIC implementation
Each thread works on a sub-lattice and performs:
for (step = 0; step < MAXSTEP ; step++) {

if (tid == 0 | | tid == NTHR−1) {
comm () ; / / exchange borders
propagate () ; / / apply propagate to l e f t− and r i g h t−border

} else {
propagate () ; / / apply propagate to the inne r pa r t

}

pthread_barrier_wait (. . .) ;

if (tid == 0)
bc () ; / / apply bc () to the three upper row−c e l l s

if (tid == 1)
bc () ; / / apply bc () to the three lower row−c e l l s

pthread_barrier_wait (. . .) ;

collide () ; / / compute c o l l i d e ()

pthread_barrier_wait (. .) ;
}

Offload a function that spawns several threads

S. F. Schifano (Univ. and INFN of Ferrara) Compunting on K-architectures CHEP October 14-18, 2013 12 / 23

Implementation: vector programming

Populations of 8 lattice-cells are packed in a AVX vector of 8-doubles

struct {
__m512d vp0 ;
__m512d vp1 ;
__m512d vp2 ;
. . .
__m512d vp36 ;

} vpop_t ;

vpop_t lattice [LX] [LY] ;

AoS scheme

Intrinsics
d = a× b + c =⇒ d = _m512_fmadd_pd(a,b,c)

S. F. Schifano (Univ. and INFN of Ferrara) Compunting on K-architectures CHEP October 14-18, 2013 13 / 23

Propagate

Performance are limited by internal ring bandwidth: ≈ 200 GB/s

S. F. Schifano (Univ. and INFN of Ferrara) Compunting on K-architectures CHEP October 14-18, 2013 14 / 23

Collide

scalar: icc -mmic -O3 -openmp -novec, 240 threads, ε ≈ 5%

scalar: icc -mmic -O3 -openmp, 240 threads, ε ≈ 15%

vector: intrinsic, openmp, 240 threads, ε ≈ 30%

S. F. Schifano (Univ. and INFN of Ferrara) Compunting on K-architectures CHEP October 14-18, 2013 15 / 23

Single-host multi-MIC version

partion lattice along X-direction among the MICs

one MPI process per MIC

MPI-process logically arranged in a ring

S. F. Schifano (Univ. and INFN of Ferrara) Compunting on K-architectures CHEP October 14-18, 2013 16 / 23

Single-host multi-MIC: implementation

Host offload execution of kernels

for (step = 0; step < MAXSTEP ; step++) {

exchange_borders () ;

#pragma offload target (mic:−1) { propagate (. . .) }

#pragma offload target (mic:−1) { bc (. . .) }

#pragma offload target (mic:−1) { collide (. . .) }

}

S. F. Schifano (Univ. and INFN of Ferrara) Compunting on K-architectures CHEP October 14-18, 2013 17 / 23

Single-host multi-MIC: exchange borders

1 copy the 3 right-most and left-most columns from device to host

2 exchange data with left and right neighbour

3 copy data from host to device

/ / t r a n s f e r data from device to host (d2h)
#pragma offload_transfer : out (c f2 [LEFT_THREE_COLS] : REUSE into (send_L_buf))
#pragma offload_transfer : out (c f2 [RIGHT_THREE_COLS] : REUSE into (send_R_buf))

/ / execute halos SWAP
MPI_Sendrecv (send_R_buf to mpi_rank_R , TAG_RIGHT , recv_L_buf to mpi_rank_L , TAG_RIGHT) ;
MPI_Sendrecv (send_L_buf to mpi_rank_L , TAG_LEFT , recv_R_buf to mpi_rank_R , TAG_LEFT) ;

/ / t r a n s f e r data from host to device (h2d)
#pragma offload_transfer : in (recv_L_buf : REUSE into (c f2 [LEFT_HALO]))
#pragma offload_transfer : in (recv_R_buf : REUSE into (c f2 [RIGHT_HALO]))

S. F. Schifano (Univ. and INFN of Ferrara) Compunting on K-architectures CHEP October 14-18, 2013 18 / 23

Overlapping Data-transfer & Computing

S. F. Schifano (Univ. and INFN of Ferrara) Compunting on K-architectures CHEP October 14-18, 2013 19 / 23

Overlapping Data-transfer & Computing
/ / launch asynchrouns t r a n s f e r from device to host (d2h)
#pragma offload_transfer : out (c f2 [LEFT_THREE_COLS] : REUSE into (send_L_buf))

signal (&send_L_buf)
#pragma offload_transfer : out (c f2 [RIGHT_THREE_COLS] : REUSE into (send_R_buf))

signal (&send_R_buf)

/ / launch asynchronous execut ion o f propagate kerne l over BULK
#pragma offload : signal (& i n t e r n a l _ p r o p _ s i g n a l) { propagate_m (. . .) ; }

/ / wa i t end of d2h t r a n s f e r
#pragma offload_wait : wait (&send_L_buf)
#pragma offload_wait : wait (&send_R_buf)

/ / execute halos SWAP
MPI_Sendrecv (send_R_buf to mpi_rank_R , TAG_RIGHT , recv_L_buf to mpi_rank_L , TAG_RIGHT) ;
MPI_Sendrecv (send_L_buf to mpi_rank_L , TAG_LEFT , recv_R_buf to mpi_rank_R , TAG_LEFT) ;

/ / launch asynchrous t r a n s f e r from host to device (h2d)
#pragma offload_transfer : in (recv_L_buf : REUSE into (c f2 [LEFT_HALO])) signal (&recv_L_buf)
#pragma offload_transfer : in (recv_R_buf : REUSE into (c f2 [RIGHT_HALO])) signal (&recv_R_buf)

/ / wa i t end of h2d t r a n s f e r
#pragma offload_wait : wait (&recv_L_buf)
#pragma offload_wait : wait (&recv_R_buf)

/ / launch asynchronous execut ion o f propagate over l e f t− and r i g h t−columns
#pragma offload { propagate_m (. . .) ; } signal(& ex te rna l_p rop_s igna l)

/ / wa i t end of propagate kerne ls
#pragma offload_wait : wait (& i n t e r n a l _ p r o p _ s i g n a l)
#pragma offload_wait : wait (&ex te rna l_p rop_s igna l)

S. F. Schifano (Univ. and INFN of Ferrara) Compunting on K-architectures CHEP October 14-18, 2013 20 / 23

Results
#MIC 1 2 3 4
Tprop (msec) 164.3 86.6 62.1 51.0
Tbc (msec) 6.6 5.1 4.9 5.4
Tcol (msec) 435.2 219.9 147.7 112.8
Ttot (msec) 606.1 311.9 215.1 169.4
Propagate (GB/s) 85 161 225 274
Sr 1.0X 1.90X 2.65X 3.22X
Collide (GFs) 358 709 1056 1383
Sr 1.0X 1.98X 2.95X 3.86X
Global P (GF/s) 257 500 725 920
MLUPS 38.93 72.63 109.68 139.23
Sr 1.0X 1.95X 2.82X 3.56X

Single host with 4 MICs

lattice 5760× 4096

collide: 6613 flop/site

S. F. Schifano (Univ. and INFN of Ferrara) Compunting on K-architectures CHEP October 14-18, 2013 21 / 23

Simulation of the Rayleigh-Taylor (RT) Instability
Instability at the interface of two fluids of different densities triggered by
gravity.

A cold-dense fluid over a less dense and warmer fluid triggers an instability
that mixes the two fluid-regions (till equilibrium is reached).

S. F. Schifano (Univ. and INFN of Ferrara) Compunting on K-architectures CHEP October 14-18, 2013 22 / 23

Conclusion: performances comparison

Performance comparisons of our D2Q37 lattice boltzmann code on several
platforms:

Nvidia C2050 Intel dual E5-2680 Xeon-Phi 7120X Nvidia K20X
propagate GB/s 84 60 98 155
ε 58% 70% 28% 62%
collide GF/s 205 220 362 565
ε 41% 63% 30% 43%
MLUPS 23 29 54 64
µJ / site 10.35 8.96 5.55 3.67

Performances of single-accelerators are a factor 2-3X better of a classic
dual-processor CPU server.

S. F. Schifano (Univ. and INFN of Ferrara) Compunting on K-architectures CHEP October 14-18, 2013 23 / 23

