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The emergence of accelerators

Use of accelerator based systems is today a common option for HPC.
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Why are they interesting ?
Xeon E5-2687 Tesla K20X Xeon-Phi 7120P

#physical-cores 8 14 SMX 61
#logical-cores 16 2688 244
clock (GHz) 3.1 0.735 1.238
GFLOPS (DP/SP) 198.4/396.8 1.317/3.950 1.208/2.416
SIMD AVX 64-bit N/A AVX2 512-bit
cache (MB) 20 1.5 30.5
#Mem. Channels 4 – 16
Max Memory (GB) 256 6 16
Mem BW (GB/s) 51.2 250 352
ECC YES YES YES

1 Tflops in one device 4

nothing is for free 8

I manage high number of threads
I exploit several levels of parallelism
I hide latency host-device (Amdhal law)
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The INFN COKA project
originally Computing On Knights Architectures

today Computing On K-Architectures to include also GP-GPUs

Architectures:

“classic” multi-core

Many-core: GPUs, Xeon-Phi (MIC)

low-power systems

Goals:

investigate performance of multi- and many-core processors

assess programming methodologies

Focus
In the rest of the talk I focus only on benchmarking MIC-based systems using
a LBM code.
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LBM at glance
Lattice Boltzmann method (LBM) is a class of computational fluid
dynamics (CFD) methods.

Simulation of synthetic dynamics described by the discrete Boltzmann
equation, instead of the Navier-Stokes equations.

The key idea:
I a set of virtual particles called populations arranged at edges of

a discrete and regular grid
I interacting by propagation and collision reproduce – after

appropriate averaging – the dynamics of fluids.

relevant features:

I “Easy” to implement complex physics.
I Good computational efficiency on MPAs.
I Useful tool to investigate performances of processors.
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The D2Q37 Lattice Boltzmann Model at Glance
Lattice Boltzmann method (LBM) is a class of computational fluid
dynamics (CFD) methods

simulation of synthetic dynamics described by the discrete Boltzmann
equation, instead of the Navier-Stokes equations

a set of virtual particles called populations arranged at edges of a
discrete and regular grid

interacting by propagation and collision reproduce – after appropriate
averaging – the dynamics of fluids

D2Q37 is a D2 model with 37 components of velocity (populations)

suitable to study behaviour of compressible gas and fluids optionally in
presence of combustion 1 effects

correct treatment of Navier-Stokes, heat transport and perfect-gas
(P = ρT ) equations

1chemical reactions turning cold-mixture of reactants into hot-mixture of
burnt product.

S. F. Schifano (Univ. and INFN of Ferrara) Compunting on K-architectures CHEP October 14-18, 2013 6 / 23



Computational Scheme of LBM
foreach time−step

foreach lattice−point
propagate ( ) ;

endfor

foreach lattice−point
collide ( ) ;

endfor

endfor

Embarassing parallelism
All sites can be processed in parallel applying in sequence propagate and
collide.

Challenge
Design an efficient implementation to exploit a large fraction of available peak
performance.
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D2Q37: propagation kernel

require to access neighbours cells at distance 1,2, and 3

generate memory-accesses with sparse addressing patterns

This kernel is strongly memory-bound.
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D2Q37: boundary-conditions

we simulate a 2D lattice with
period-boundaries along x-direction

at the top and the bottom boundary
conditions are enforced:

I to adjust some values at sites
y = 0 . . . 2 and y = Ny − 3 . . .Ny − 1

I e.g. set vertical velocity to zero

This step (bc) is computed before the collision step.
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D2Q37: collision kernel

collision is computed to each lattice-cell

computational intensive: for the D2Q37 model, and
requires > 7600 DP operations

completely local: arithmetic operations require only the populations
associate to the site

This kernel is strongly compute-bound.
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Optimizations relevant for Xeon-Phi performances

P = f × #cores× NopPerCycle× NflopPerOp

core parallelism:
the lattice is split among the 61 CPU-cores;

hyper-threading:
each core runs 2-4, threads to keep hardware pipelines busy and hide
memory accesses latency;

vector programming:
each core process several sites in parallae data-set using vector
(streaming) instructions (SIMD parallelism); in the case of Xeon-Phi
up-to 8 double-precision values can be processed by each vector
instructions.
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Single-MIC implementation
Each thread works on a sub-lattice and performs:
for ( step = 0; step < MAXSTEP ; step++ ) {

if ( tid == 0 | | tid == NTHR−1 ) {
comm ( ) ; / / exchange borders
propagate ( ) ; / / apply propagate to l e f t− and r i g h t−border

} else {
propagate ( ) ; / / apply propagate to the inne r pa r t

}

pthread_barrier_wait ( . . . ) ;

if ( tid == 0 )
bc ( ) ; / / apply bc ( ) to the three upper row−c e l l s

if ( tid == 1 )
bc ( ) ; / / apply bc ( ) to the three lower row−c e l l s

pthread_barrier_wait ( . . . ) ;

collide ( ) ; / / compute c o l l i d e ( )

pthread_barrier_wait ( . . ) ;
}

Offload a function that spawns several threads
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Implementation: vector programming

Populations of 8 lattice-cells are packed in a AVX vector of 8-doubles

struct {
__m512d vp0 ;
__m512d vp1 ;
__m512d vp2 ;
. . .
__m512d vp36 ;

} vpop_t ;

vpop_t lattice [LX ] [ LY ] ;

AoS scheme

Intrinsics
d = a× b + c =⇒ d = _m512_fmadd_pd(a,b,c)
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Propagate

Performance are limited by internal ring bandwidth: ≈ 200 GB/s
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Collide

scalar: icc -mmic -O3 -openmp -novec, 240 threads, ε ≈ 5%

scalar: icc -mmic -O3 -openmp, 240 threads, ε ≈ 15%

vector: intrinsic, openmp, 240 threads, ε ≈ 30%
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Single-host multi-MIC version

partion lattice along X-direction among the MICs

one MPI process per MIC

MPI-process logically arranged in a ring
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Single-host multi-MIC: implementation

Host offload execution of kernels

for ( step = 0; step < MAXSTEP ; step++ ) {

exchange_borders ( ) ;

#pragma offload target (mic:−1) { propagate ( . . . ) }

#pragma offload target (mic:−1) { bc ( . . . ) }

#pragma offload target (mic:−1) { collide ( . . . ) }

}
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Single-host multi-MIC: exchange borders

1 copy the 3 right-most and left-most columns from device to host

2 exchange data with left and right neighbour

3 copy data from host to device

/ / t r a n s f e r data from device to host ( d2h )
#pragma offload_transfer : out ( c f2 [LEFT_THREE_COLS] : REUSE into ( send_L_buf ) )
#pragma offload_transfer : out ( c f2 [RIGHT_THREE_COLS] : REUSE into ( send_R_buf ) )

/ / execute halos SWAP
MPI_Sendrecv (send_R_buf to mpi_rank_R , TAG_RIGHT , recv_L_buf to mpi_rank_L , TAG_RIGHT ) ;
MPI_Sendrecv (send_L_buf to mpi_rank_L , TAG_LEFT , recv_R_buf to mpi_rank_R , TAG_LEFT ) ;

/ / t r a n s f e r data from host to device ( h2d )
#pragma offload_transfer : in ( recv_L_buf : REUSE into ( c f2 [LEFT_HALO] ) )
#pragma offload_transfer : in ( recv_R_buf : REUSE into ( c f2 [RIGHT_HALO ] ) )
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Overlapping Data-transfer & Computing
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Overlapping Data-transfer & Computing
/ / launch asynchrouns t r a n s f e r from device to host ( d2h )
#pragma offload_transfer : out ( c f2 [LEFT_THREE_COLS] : REUSE into ( send_L_buf ) )

signal ( &send_L_buf )
#pragma offload_transfer : out ( c f2 [RIGHT_THREE_COLS] : REUSE into ( send_R_buf ) )

signal ( &send_R_buf )

/ / launch asynchronous execut ion o f propagate kerne l over BULK
#pragma offload : signal ( & i n t e r n a l _ p r o p _ s i g n a l ) { propagate_m ( . . . ) ; }

/ / wa i t end of d2h t r a n s f e r
#pragma offload_wait : wait ( &send_L_buf )
#pragma offload_wait : wait ( &send_R_buf )

/ / execute halos SWAP
MPI_Sendrecv (send_R_buf to mpi_rank_R , TAG_RIGHT , recv_L_buf to mpi_rank_L , TAG_RIGHT ) ;
MPI_Sendrecv (send_L_buf to mpi_rank_L , TAG_LEFT , recv_R_buf to mpi_rank_R , TAG_LEFT ) ;

/ / launch asynchrous t r a n s f e r from host to device ( h2d )
#pragma offload_transfer : in ( recv_L_buf : REUSE into ( c f2 [LEFT_HALO] ) ) signal ( &recv_L_buf )
#pragma offload_transfer : in ( recv_R_buf : REUSE into ( c f2 [RIGHT_HALO ] ) ) signal ( &recv_R_buf )

/ / wa i t end of h2d t r a n s f e r
#pragma offload_wait : wait ( &recv_L_buf )
#pragma offload_wait : wait ( &recv_R_buf )

/ / launch asynchronous execut ion o f propagate over l e f t− and r i g h t−columns
#pragma offload { propagate_m ( . . . ) ; } signal(& ex te rna l_p rop_s igna l )

/ / wa i t end of propagate kerne ls
#pragma offload_wait : wait ( & i n t e r n a l _ p r o p _ s i g n a l )
#pragma offload_wait : wait ( &ex te rna l_p rop_s igna l )
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Results
#MIC 1 2 3 4
Tprop (msec) 164.3 86.6 62.1 51.0
Tbc (msec) 6.6 5.1 4.9 5.4
Tcol (msec) 435.2 219.9 147.7 112.8
Ttot (msec) 606.1 311.9 215.1 169.4
Propagate (GB/s) 85 161 225 274
Sr 1.0X 1.90X 2.65X 3.22X
Collide (GFs) 358 709 1056 1383
Sr 1.0X 1.98X 2.95X 3.86X
Global P (GF/s) 257 500 725 920
MLUPS 38.93 72.63 109.68 139.23
Sr 1.0X 1.95X 2.82X 3.56X

Single host with 4 MICs

lattice 5760× 4096

collide: 6613 flop/site

S. F. Schifano (Univ. and INFN of Ferrara) Compunting on K-architectures CHEP October 14-18, 2013 21 / 23



Simulation of the Rayleigh-Taylor (RT) Instability
Instability at the interface of two fluids of different densities triggered by
gravity.

A cold-dense fluid over a less dense and warmer fluid triggers an instability
that mixes the two fluid-regions (till equilibrium is reached).
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Conclusion: performances comparison

Performance comparisons of our D2Q37 lattice boltzmann code on several
platforms:

Nvidia C2050 Intel dual E5-2680 Xeon-Phi 7120X Nvidia K20X
propagate GB/s 84 60 98 155
ε 58% 70% 28% 62%
collide GF/s 205 220 362 565
ε 41% 63% 30% 43%
MLUPS 23 29 54 64
µJ / site 10.35 8.96 5.55 3.67

Performances of single-accelerators are a factor 2-3X better of a classic
dual-processor CPU server.
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