ALEPH analysis preservation

Simone Coscetti - <u>simone.coscetti@cern.ch</u>
INFN Pisa
Engineering Ph.D. School ~ University of Pisa

Aims

- * This is a preliminary work on software and data preservation of the ALEPH experiment.
- * Fully functional stand-alone ALEPH installation.
- Use cases we wanted to cover:
 - initial integration with a Cloud technology;
 - definition of data distribution policy (Apache/WebDav, StoRM);
 - instantiate interactive machines on demand.

ALEPH environment

Current situation using VirtualBox:

- SLC4 distribution.
- * ALEPH environment:
 - * SLC4;
 - CERNLIB;
 - ALEPH software;
 - ALEPH data access.

Last native environment of the experiment:

- Linux RedHat 6.2;
- direct acces to CERN tape;
- software installed on AFS heavy dependences on CERNLIB

SLC4 and CERNLIB

- * Why SLC4? It has been used few years ago for published analysis (last known official Aleph analysis use SLC4).
 - * Also SLC5 is suitable for this purpose, but for preservation goals it is important to have a certified platform for analysis.
- * CERNLIB rpm is available in the SLC4 repository and no problem observed in the coexistence with SLC4 and ALEPH software.
 - * The integration of CERNLIB with SLC5 and ALEPH software is more elaborated but not impossible.

AFS

- * a local copy of the needed files stored under the /afs/cern.ch/aleph/ area has been made;
- * the system at the moment is totally independent from AFS;
- moreover, it is independent from any network issue (keeping out cloud applications).
- * a different choice is represented by CernVM-FS (building a /cvmfs/aleph.cern.ch/ area):
 - * at the moment this is not of primary importance the software occupy ~hundreds MegaBytes of space.

How the VM was prepared

- * SLC4 32 bit;
- CERNLIB available on yum repository;
- * software locally copied from /afs/cern.ch/aleph;

* no dependences from AFS and network, a part from DB access.

Data

- CERN currently hosts archival ALEPH data on the Castor storage system:
 - * slow and complex access to them.
- * We have searched for a solution that guarantees readiness and ease of use:
 - * total data + MC for analysis is less than 20 TB: it can be served by a single WebDay instance.
 - plan is to use StoRM resource manager;
 - data have been moved to a current generation disk system at T2_IT_Pisa and served via the WebDav protocol (SL4 supports davfs2).

Cloud computing

- * A set of virtual machines like this is available on a cloud supplied by the INFN-Bari datacenter for jobs submission, thanks to two italian projects:
 - PRISMA IaaS and PaaS Cloud Computing infrastructure with completely OpenSource solutions, available for scientific community, business companies and public administrations;
 - * ReCaS development of the Computing infrastructure in the south of Italy, Bari is involved in the construction of a new datacenter with 15k CPUs and 5 PB of storage.
- * Such a system is implemented in an OpenStack instance.

Tested software components

- * The whole analysis chain has been reproduced:
 - * kingal: event generator library;
 - galeph: MC simulation program for the detector;
 - julia: reconstruction program;
 - alpha: physics analysis package.
- * Compilation of new analyses and software works not limited to replaying ancient analyses.

```
rho
5600
5200
4200
4000
                            II
                            II-
3800
3600
3200
3000
2800
2600
2400
2200
1800
1400
1200
1000
            12345678901234567890123456789012345678901234567890
```

Tested software components

- * Interactive use the system is suitable for interactive analysis.
- * All the previous functionalities, plus the event display and PAW works.

Applications

- The solution can be used to reproduce published analysis and completely new studies.
- * The solution includes a complete development environment, where software components at any step can be modified, recompiled, debugged.
- * The whole software stack is available, for data and MC sets, for interactive and batch processing.

Conclusions

- Installed a SLC4 with fully ALEPH environment available:
 - no dependency from AFS and network issues.
- * Cloud computing for job submission is possible via an OpenStack instance hosted by the Bari datacenter.
- * Data and MC are available in a current generation disk system.
 - * They can be served by a single WebDav instance.

Conclusions

- * The whole ALEPH analysis chain has been reproduced:
 - * the machine is ready and available for interactive usage, ancient analysis can be reproduced and new ones are possible;
 - software components at any steps can be modified;
 - interactive and batch processing are possible.

* Knowledge and bit preservation services developed by european projects will be investigated (SCIDIP-ES, EUDAT).

Backup

IaaS Open Source: current situation (INFN testbed)

- ≥11 server
- ≥264 CPU/Core
- >880 GB RAM
- ►66TB HDD (DAS) 7.2K rpm
- Manager Node (24 Core, 80GB Ram, 6dischi, 10Gbit/s)
- Network Node (24 Core, 80GB Ram, 6dischi, 10Gbit/s)
- o Gbit/s on Wide-Area-Network
- 250 Public IP addresses AVAILABLE