
Round-tripping DIRAC: Automated Model-Checking
of Concurrent Software Design Artifacts

Motivation

Daniela Remenska - Jeff Templon - Tim Willemse - Henri Bal - Kees Verstoep - Adrian Casajous - Philip Homburg

Future WorkConclusions

DIRAC WMS background

▪ Executors Framework: Set of omponents responsible
for orchestrating the WMS before the jobs run on the Grid:
OptimizationMind and Executors

▪ The Executors process any job sent to them by the
OptimizationMind, each one being responsible for a
different step in the handling of jobs
(e.g., resolving the input data for a job)

▪ The ExecutorDispatcher persists the state of the jobs
and distributes them among the Executors, based on the
requirements of each job.

▪ Difficult to trace the root cause of such faulty behavior
 many scenarios due to concurrent components

▪ Certain problems manifested in the new components:
occasionally, jobs submitted in the system would not
get dispatched, despite the fact that their responsible
Executors were idle at the moment

▪ Attempts to identify the problem: test with different
workload scenarios, analyse the generated logs

There are formal or systematic
approaches to tackle this!

Based on process algebra laws
no ambiguity

Mature model checking tools
Full control over the execution of concurrent processes.
This way one gains more insight into the system behavior.

Automatically explore all possible system behaviors
and check if some interesting properties hold
Tools report problems for you, just ask

Stronger than testing a limited amount of scenarios

BUT....!
One must build/write a sound model in the language of
process algebra, as an abstraction of the real behavior

Software engineers lack expertise in formal methods

Investing time to learn process algebra and model
checking concepts is mostly a no-no!

Why Formal Methods?

Can we automatically generate
 this formal model?

Can we decode this trace easily?

Methodology

Analysis & Issues

UML is the lingua-franca for software engineers, so
we use UML designs as a starting point. Behavioral
views such as Sequence Diagrams express the system
dynamics, which is necessary for analysis. However,
UML tools do not provide exhausive verification
capabilities.

We used the toolset to generate a formal model of the
Executor framework, based on Sequence Diagrams in UML.
We formulated a property to express that any task
pushed in the OptimizationMind's queue should be
processed, i.e., eventually removed from the queue,
before declaring that there are no more tasks to process.

We developed a toolset for verification of UML
models, based on dynamic views of the system

The transformation preserves the object-oriented
view of the system, making the model easier
to understand

The methodology is based on transforming
the UML model into process algebra one,
amenable to model checking

The model checking counter-example traces can
be fed back into any UML tool for analysis

Model checking for application-specific properties still requires
the use of temporal logic formulas. Expressing such properties
as sequence diagrams of accept/reject scenarios is part of our
future work

Our methodology allows counter-example traces from
the model checking tool to be conveniently displayed
back in any UML design tool, allowing the software
designer to stay in his familiar environment.

To bridge the gap between UML software designs and
formal analysis & verification with model checking
tools, we designed a transformation methodology to
obtain a process algebra model automatically.

"Whenever a task has been processed by some Executor,
the ExecutorDispatcher is notified, and this removes it from
its list of processing tasks. To further dispatch the task to
another Executor, this task is removed from the dispatcher’s
memory followed by retrieval of the next responsible Executor.
In case it was actually processed by the last Executor
in the chain. The dispatcher attempts to retrieve its last
Executor, so that more tasks can be dispatched to this (now
free) Executor. However, this information is already removed.
As a result, the opt fragment will not be executed, and no
further tasks waiting for this Executor will be dispatched."

The bug was reported and fixed.

