Round-tripping DIRAC: Automated Model-Checking
of Concurrent Software Design Artifacts

Daniela Remenska - Jeff Templon - Tim Willemse - Henri Bal - Kees Verstoep - Adrian Casajous - Philip Homburg

Motivation

DIRAC WMS background

Job
repository

epository ‘
lt\ ‘ Optimization Mind \

Agent
Type 3
Optimizer Optimizer I ' i Optimizer
Executor Executor Executor
Type 1 Type 2 Type 3

m Executors Framework: Set of omponents responsible
for orchestrating the WMS before the jobs run on the Grid:
OptimizationMind and Executors

Job

I‘

m The Executors process any job sent to them by the
OptimizationMind, each one being responsible for a
different step in the handling of jobs

(e.q., resolving the input data for a job)

m The ExecutorDispatcher persists the state of the jobs
and distributes them among the Executors, based on the
requirements of each job.

m Certain problems manifested in the new components:
occasionally, jobs submitted in the system would not
get dispatched, despite the fact that their responsible
Executors were idle at the moment

m Difficult to trace the root cause of such faulty behavior
many scenarios due to concurrent components

m Attempts to identify the problem: test with different
workload scenarios, analyse the generated logs

There are formal or systematic
approaches to tackle this!

Why Formal Methods?

Based on process algebra laws
no ambiguity

Mature model checking tools
Full control over the execution of concurrent processes.
This way one gains more insight into the system behavior.

Automatically explore all possible system behaviors

and check if some interesting properties hold
Tools report problems for you, just ask

Stronger than testing a limited amount of scenarios

BUT....}

One must build/write a sound model in the language of
process algebra, as an abstraction of the real behavior

Software engineers lack expertise in formal methods

Investing time to learn process algebra and model
checking concepts is mostly a no-no!

Conclusions

We developed a toolset for verification of UML The transformation preserves the object-oriented
models, based on dynamic views of the system view of the system, making the model easier
to understand

The methodology is based on transforming

C.‘: 2 reg

______ K » LFC
Production Che / Yata
Manager { Boak keeping 1
/ Database Da
/ .
/
/
R,
T n

Are there
deadlocks in
my system?

Model Checker

synch call send(id,ExecutorDispatcher,obj, idMap get(eId)).

sum eTypes:List(eType). synch _reply send(id, ,ExecutorDispatcher,obj, __idMap get return(eTypes)).

(eTypes==[]) -> synch reply receive(id,ExecutorDispatcher,obj, __sendTaskToExecutor return(ERROR,0)) <>
(

synch call send(id,ExecutorQueues, queues,popTask(eTypes)).

Nope, you're
~ good to go!

v

, Houston, we
“ have a problem!

-~

Software/Hardware d
System
synch call(l, ExecutorState, states, taskInExec get(22))
synch reply(l ExecutorState states, taskInExec get return(1l))
synch call send(id,ExecutorState, states,freeSlots(eld)). synch call(l, ExecutorState, states, execTasks removetaskid(11, 22))
sum noSlots:Nat.synch reply send(id,ExecutorState, states,freeSlots return(noSlots)). synch reply(1l, ExecutorState, _states execTasks removetaskid _return)
(checkIdle && noSlots==0) -> synch call(l, ExecutorState, states, taskInExec _pop(22))
synch reply receive(id,ExecutorDispatcher,obj, sendTaskToExecutor return(0K,®)).step3 2(0) <> synch reply(1, ExecutorState, states, taskInExec pop return)
(synch reply(1l, ExecutorState, _states, removeTask return(true))
(eTypes==[]) -> synch call(1, ExecutorDispatcher, eDispatch, idMap get(11))
(synch reply(1, ExecutorDispatcher, eDispatch, idMap get return([JobPath, JobSanity, JobScheduling]

synch reply(1, ExecutorDispatcher, eDispatch, taskReceived return(OK, JobScheduling))

synch call(1l, MindCallbacks, _ cbHolder, cbTaskProcessed(22, taskObj(22, [JobPath, JobSanity, JobSchedu
synch reply(1l, MindCallbacks, cbHolder, cbTaskProcessed return(0K))

synch call(1l, ExecutorDispatcher, __eDispatch, tasks update(22 taskObj (22, [JobPath, JobSanity, JobS

sum taskId:Nat,eType:eType.synch reply send(id,ExecutorQueues, queues,popTask return(taskld,eType)). | synch _reply(1l, ExecutorDispatcher, _ eDispatch, tasks update return)

((taskId!=0)-> step2 2(taskId,eType) <> internal). synch call(l, ExecutorDispatcher, eDispatch, d15patchTask(22 true))
(taskId==0) -> synch call(l, ExecutorState, states, getExecutor0fTask(22))
synch reply receive(id,ExecutorDispatcher,obj, sendTaskToExecutor return(0K,©)).step3 2(0) <> synch call(l, ExecutorState, :states, _taskInExec get(22))
synch reply(1l, ExecutorState, states, taskInExec get return(-1))
synch call send(id,ExecutorState, states,addTask(eld,taskId)). synchvreply(l, ExecutorState, —*states, gﬁtExecutorO?TasR return(0))
synch_reply_send(id,ExecutorState, _states,addTask return). synch call(l, ExecutorDispatcher, eDispatch, removeFromFreezer(22))

synch _call send(id, ExecutorDispatcher,obj, mngaskToExecutor(taskId,eId,eType)).
sum reply:Reply. synch reply send(id,ExecutorDispatcher,obj, msgTaskToExecutor return(reply)).
(reply!=0K) ->
synch call send(id,ExecutorQueues, queues,pushTask(eType,taskId,true)).
synch reply send(id,ExecutorQueues, __queues,pushTask return).
synch call send(ld ExecutorState, states,removeTask(taskId,0)).
I1t:Bool. nch reply send(ld ExecutorState, states,removeTask return(result)).
Exe rDispatcher, obw sendTaskToExecutor return(reply,0))
ob kToExecutor return(0K,taskId))

Can we automatically generate
this formal model?

1(1, ExecutorDispatcher

Can we decode this trace easily?

UML is the lingua-franca for software engineers, so

we use UML designs as a starting point. Behavioral

views su

Methodology dynamic

Analysis & Issues

We used the toolset to generate a formal model of the
Executor framework, based on Sequence Diagrams in UML.
We formulated a property to express that any task

processed, i.e., eventually removed from the queue,
pefore declaring that there are no more tasks to process.

"Whenever a task has been processed by some Executor,
the ExecutorDispatcher is notified, and this removes it from
its list of processing tasks. To further dispatch the task to
another Executor, this task is removed from the dispatcher’s

memory followed by retrieval of the next responsible Executor.

In case it was actually processed by the last Executor

In the chain. The dispatcher attempts to retrieve its last
Executor, so that more tasks can be dispatched to this (now
free) Executor. However, this information is already removed.
As a result, the opt fragment will not be executed, and no
further tasks waiting for this Executor will be dispatched."

The bug was reported and fixed.

pushed in the OptimizationMind's queue should be =}

ch as Sequence Diagrams express the system
s, which is necessary for analysis. However,

UML tools do not provide exhausive verification

IUML metamodel I mCRL2 n:etamodel / ChkmCRLZ L
_____ conforms[o‘Conformsm; wsdce toolset Ca pa bl | Itl eS)
UML | e ‘ 5
i | mCRL2model | nostlctrace | To bridge th bet UML soft desi d
System UML i g ________ jeracel O Dbriage € gap petween SOoTtware designs an
’"°fe'] """"""""""""" l formal analysis & verification with model checking
export (/ﬁﬁaﬁr?&sefsr%&iow\ oty translormation tools, we designed a transformation methodology to
l o e Qﬂf) | obtain a process algebra model automatically.
XMI s .
. — Parse XMl e e o AAL s
representation | ___-_,) < Constuetxvi > | Qur methodology allows counter-example traces from
i Transformation tool g . . .
el | the model checking tool to be conveniently displayed
oftrace | [*———_import_)= XMirepresentation || pack in any UML design tool, allowing the software

designer to stay in his familiar environment.

..

.................................

.................................

__

synch call(1, ExecutorDlspatcher eblspatch dlspatchTask(zz true))
synch call(1, ExecutorState ._states, getExecutorOf‘I’ask(ZZ)) :

synch reply(1, ExecutorState __states getExecutorOfTask return(0))))

..

ExecutionMindHandler H _eD|spatch.ExecutorDlspatcher: E _states.ExecutorState

taskProcessed (eld = 1, taskld = 22) ! :
T _taskReceive,d (taskid = 22,eld =11)

i 4
removeTask (taskld=22,eld =1)_

taskinExec_pop (tasklid = 22)

\ task already

removeTask .
Vv \ removed!

__dispatchTask (taskld =22)

.

__getNextExecutor (taskld =22)

__getNextExecutor (taskld =-) : None

zremoveTask (taskld =22)

getExecutorOfTask (taskld =22)
__taskinExec_get (taskld =22) \

-«

__taskinExec_get (taskld =-):None

—sendTaskToExecutor (eld = 1, checkldle=True) |« thjs part will not execute

[eld != None] j

taskProcessed

Future Work

as seqguence di

the UML model into process algebra one, The model checking counter-example traces can future work
amenable to model checking be fed back into any UML tool for analysis

Model checking for application-specific properties still requires
the use of temporal logic formulas. Expressing such properties

agrams of accept/reject scenarios is part of our

DIRA

THE INTERWARE

