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Introduction 

• Statistical data analysis is at  

the heart of all (particle)  

physics experiments. 

• Techniques deployed in HEP  

get more and more complicated  

 Hunting for ‘difficult signals’  

    (Higgs) 

 Desire to control systematic  

    uncertainties through 

    simultaneous fits to control  

    measurements 

• Nowadays discoveries entail  

simultaneous modeling of  

hundreds of distributions with  

models with over a 1000  

parameters  Well beyond  

ROOTs ‘TF1’ function classes 
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A structured approach to computational statistical analysis 

• A structured approach is needed to be able to describe and use 

data models needed for modern HEP analyses 

• 1 - Data modeling: construct a model f(x|θ) 

 

 

 

 

 

 

 

• 2 - Statistical inference on θ, given x0 and f(x|θ) 

– Parameter estimation ‘θ’ & variance estimation (V(θ))  MINUIT 

– Confidence intervals: [θ-, θ+], θ<X at 95% C.L.  

hypothesis testing etc:  p(data|θ=0) = 1.10-7  
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fsig ×

SigSel(m; psig ) ×

SigDecay(t;qsig,sin(2b))

ÄSigResol(t | dt;rsig )
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+ (1- fsig )

BkgSel(m; pbkg ) ×

BkgDecay(t;qbkg )

ÄBkgResol(t | dt;rbkg )
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‘xobs’ ‘f(x|θ)’  L(θ)=f(xobs|θ) 

 RooFit (since 1999) 

 RooFit::HistFactory (since 2010) 

 RooStats (since 2007) 



RooFit – a toolkit to formulate probability models in C++ 

• Key concept: represent individual elements of a mathematical 

model by separate C++ objects 
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variable RooRealVar 

function RooAbsReal 

PDF RooAbsPdf 

space point RooArgSet 

list of space points RooAbsData 

integral RooRealIntegral 

RooFit class Mathematical concept 
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• Functions objects are always ‘trees’ of objects, with pointers 

(managed through proxies) expressing relations 

RooFit core design philosophy 

Gauss(x,μ,σ) 

RooRealVar x RooRealVar m RooRealVar s 

RooGaussian g 

RooRealVar x(“x”,”x”,-10,10) ; 
RooRealVar m(“m”,”y”,0,-10,10) ; 
RooRealVar s(“s”,”z”,3,0.1,10) ; 
RooGaussian g(“g”,”g”,x,m,s) ; 

Math 

RooFit 

diagram 

RooFit 

code 



RooFit: complete model functionality, e.g. sampling (un)binned data 

// Generate an unbinned toy MC set 
RooDataSet* data = gauss.generate(x,10000) ;   
 
// Generate an binned toy MC set 
RooDataHist* data = gauss.generateBinned(x,10000) ;   
 

// Plot PDF 

RooPlot* xframe = x.frame() ; 

data->plotOn(xframe) ; 

xframe->Draw() ; 

Example: generate 10000 events from Gaussian p.d.f and show distribution 

Can generate both binned and 

unbinned datasets 



RooFit model functionality – max.likelihood parameter estimation 

// ML fit of gauss to data 
w::gauss.fitTo(*data) ; 
(MINUIT printout omitted) 
 
// Parameters if gauss now 
// reflect fitted values 
mean.Print() ; 
sigma.Print() ; 
RooRealVar::mean = 0.0172335 +/- 0.0299542  
RooRealVar::sigma = 2.98094  +/- 0.0217306 
 

// Plot fitted PDF and toy data overlaid 

RooPlot* xframe = x.frame() ; 

data->plotOn(xframe) ; 

gauss.plotOn(xframe) ; 

PDF 

automatically 

normalized 

to dataset 



RooFit implements normalized probability models 

• Normalized probability (density) models are the basis of all 
fundamental statistical techniques  

– Defining feature: 
 
 
 
 
 
 
 
 

 

• Normalization guarantee introduces extra complication  
in calculation, but has important advantages 

– Directly usable in fundamental statistical techniques 

– Easier construction of complex models (will shows this in moment) 

• RooFit provides built-in support for normalization, taking away down-
side for users, leaving upside  

– Default normalization strategy relies on numeric techniques, but user can specify 
known (partial) analytical integrals in pdf classes. 
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f (x, p)dxò º1,

f (x, p) ³ 0
 1)( dxxF

 1),( dxdyyxF



The power of conditional probability modeling 

• Take following model f(x,y):  

what is the analytical form? 

 

 

 

 

 

 

 

• Trivially constructed with 

(conditional) probability 

density functions!  
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Gauss f(x|a*y+b,1) 

Gauss g(y,0,3) 

F(x,y) = f(x|y)*g(y) 



Coding a conditional product model in RooFit 

• Construct each ingredient with a single line of code 
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RooRealVar x(“x”,”x”,-10,10) ; 

RooRealVar y(“y”,”y”,-10,10) ; 

RooRealVar a(“a”,”a”,0) ; 

RooRealVar b(“b”,”b”,-1.5) ; 

 

RooFormulaVar m(“a*y+b”,a,y,b) ; 

RooGaussian f(“f”,”f”,x,m,C(1)) ; 

 

RooGaussian g(“g”,”g”,y,C(0),C(3)) ; 

 

RooProdPdf F(“F”,”F”,g,Conditional(f,y)) ; 

 

Gauss f(x,a*y+b,1) 

Gauss g(y,0,3) 

F(x,y) = f(x|y)*g(y) 

Note that code doesn’t care if input 

expression is variable or function! 



Building power – most needed shapes already provided 

• RooFit provides a collection of compiled standard PDF classes 

RooArgusBG 

RooPolynomial 

RooBMixDecay 

RooHistPdf 

RooGaussian 

Basic 
Gaussian, Exponential, Polynomial,… 

Chebychev polynomial 

Physics inspired 
ARGUS,Crystal Ball,  

Breit-Wigner, Voigtian, 

B/D-Decay,…. 

Non-parametric 
Histogram, Kernel estimation 

Easy to extend the library: each p.d.f. is a separate C++ class 



Individual classes can encapsulate powerful algorithms 

• Example: a ‘kernel estimation probability model’ 

– Construct smooth pdf from unbinned data, using kernel estimation 

technique 

 

 

 

 

 

 

• Example 

 

 

 

• Also available for n-D data 

Sample of events 
Gaussian pdf  

for each event 

Summed pdf 

for all events 

Adaptive Kernel: 

width of Gaussian depends  

on local event density 

 
   w.import(myData,Rename(“myData”)) ; 

   w.factory(“KeysPdf::k(x,myData)”) ; 
 



Advanced modeling building  – template morphing 

• At LHC shapes are often derived from histograms, instead of 

relying on analytical shapes . Construct parametric from 

histograms using ‘template morphing’ techniques 

Parametric model: f(x|α) 

Input 

histograms 

from simulation 



Code example – template morphing 

• Example of template morphing 

systematic in a binned likelihood 
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// Construct template models from histograms 

w.factory(“HistFunc::s_0(x[80,100],hs_0)”) ; 

w.factory(“HistFunc::s_p(x,hs_p)”) ; 

w.factory(“HistFunc::s_m(x,hs_m)”) ; 
 

// Construct morphing model 

w.factory(“PiecewiseInterpolation::sig(s_0,s_,m,s_p,alpha[-5,5])”) ;  
 

// Construct full model 

w.factory(“PROD::model(ASUM(sig,bkg,f[0,1]),Gaussian(0,alpha,1))”) ; 

Class from the HistFactory project 

(K. Cranmer, A. Shibata, G. Lewis,  

L. Moneta, W. Verkerke) 



Advanced model building – describe MC statistical 

uncertainty 

• Histogram-based models have intrinsic uncertainty to MC statistics… 

• How to express corresponding shape uncertainty with model params? 

– Assign parameter to each histogram bin, introduce Poisson ‘constraint’ on each bin 

– ‘Beeston-Barlow’ technique. Mathematically accurate, but introduce results in 

complex models with many parameters.  

L(N) = P(Ni | si +bi )
bins

Õ

L(N | s,b) = P(Ni | si +bi )
bins

Õ P(si | si
bins

Õ ) P(bi | bi
bins

Õ )

L(N |g s,gb ) = P(Ni |g s,isi +gb,ibi )
bins

Õ P(si |g s,isi
bins

Õ ) P(bi |gb,ibi
bins

Õ )

Binned likelihood  

with rigid template 

Response function 

w.r.t. s, b as parameters 

Subsidiary measurements 

of s ,b from s~,b~ 

Normalized NP model (nominal value of all γ is 1) 



Code example – Beeston-Barlow 

• Beeston-Barlow-(lite) modeling 

of MC statistical uncertainties 
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L(N |g ) = P(Ni |gi(si +bi ))
bins

Õ P(si +bi |g i(si +bi
bins

Õ ))

// Import template histogram in workspace 

 w.import(hs) ; 
 

// Construct parametric template models from histograms 
// implicitly creates vector of gamma parameters 

 w.factory(“ParamHistFunc::s(hs)”) ; 

 

 // Product of subsidiary measurement 

 w.factory(“HistConstraint::subs(s)”) ;  

 

 // Construct full model 

 w.factory(“PROD::model(s,subs)”) ; 



Code example: BB + morphing 

• Template morphing model 

with Beeston-Barlow-lite 

MC statistical uncertainties 

L(N | s,b) = P(Ni |g i ×[si(a, si
-, si

0, si
+)+bi ])

bins

Õ P(si +bi |gi ×[si +bi ]
bins
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 // Construct parametric template morphing signal model 

 w.factory(“ParamHistFunc::s_p(hs_p)”) ; 

 w.factory(“HistFunc::s_m(x,hs_m)”) ; 

 w.factory(“HistFunc::s_0(x[80,100],hs_0)”) ; 

 w.factory(“PiecewiseInterpolation::sig(s_0,s_,m,s_p,alpha[-5,5])”) ;  
 

 // Construct parametric background model (sharing gamma’s with s_p) 

 w.factory(“ParamHistFunc::bkg(hb,s_p)”) ; 
 

 // Construct full model with BB-lite MC stats modeling 

 w.factory(“PROD::model(ASUM(sig,bkg,f[0,1]), 
            HistConstraint({s_0,bkg}),Gaussian(0,alpha,1))”) ; 



From simple to realistic models: composition techniques 

• Realistic models with signal and bkg, and with control regions 

built from basic shapes using addition, product, convolution, 

simultaneous operator classes 

SUM PROD CONV SIMUL 

+ * 

= = = 
= 

Ä Å



Graphical example of realistic complex models 

variables 

function objects 

Expression graphs are 

autogenerated using 

 

pdf->graphVizTree(“file.dot”) 

 



Abstracting model building from model use - 1 

• For universal statistical analysis tools (RooStats), must be have 

universal functionality of models (independent of structure and 

complexity) 

• Was already possible in RooFit since 1999 
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RooAbsPdf 

RooDataSet 

RooAbsData 

model.fitTo(data) 

data = model.generate(x,1000) 

Fitting Generating 



Abstracting model building from model use - 2 

• Must be able to practically separate model building code from 
statistical analysis code. 

• Solution: you can persist RooFit models of arbitrary complexity in 
‘workspace’ containers 

• The workspace concept has revolutionized the way people share 
and combine analyses! 
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RooWorkspace 

RooWorkspace w(“w”) ; 

w.import(sum) ; 

w.writeToFile(“model.root”) ; 

model.root 

Realizes complete and practical 

factorization of process of  

building and using likelihood functions! 



Using a workspace file given to you… 
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RooWorkspace 

// Resurrect model and data 

TFile f(“model.root”) ; 

RooWorkspace* w = f.Get(“w”) ; 

RooAbsPdf* model = w->pdf(“sum”) ; 

RooAbsData* data = w->data(“xxx”) ; 
 

// Use model and data 

model->fitTo(*data) ; 
 

RooPlot* frame =  
         w->var(“dt”)->frame() ; 

data->plotOn(frame) ; 

model->plotOn(frame) ; 



Persistence of really complex models works too! 

F(x,p) 

x p 

Atlas Higgs combination model (23.000 functions, 1600 

parameters) 

Model has ~23.000 function objects, ~1600 parameters 

Reading/writing of full model takes ~4 seconds 

ROOT file with workspace is ~6 Mb 

 



An excursion – Collaborative analyses with workspaces 

• Workspaces allow to share and modify very complex analyses 

with very little technical knowledge required 

• Example: Higgs coupling fits 
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Full  

Higgs  

model 

Signal 

strength 

in 5 

channels 

Reparametrize 

in terms of 

fermion, boson 

scale factors  

Confidence 

intervals 

on Higgs 

fermion, 

boson 

couplings 



An excursion – Collaborative analyses with workspaces 

• How can you reparametrize existing Higgs likelihoods in 

practice? 

• Write functions expressions corresponding to new 

parameterization 

 

 

 

 

• Edit existing model  
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RooFormulaVar mu_gg_func(“mu_gg_func”, 
                         “(KF2*Kg2)/(0.75*KF2+0.25*KV2)”, 
                         KF2,Kg2,KV2) ; 

w.import(mu_gg_func) ; 

w.factory(“EDIT::newmodel(model,mu_gg=mu_gg_gunc)”) ; 

Top node of original  

Higgs combination pdf 

Top node of modified  

Higgs combination pdf 
Modification prescription: 

replace parameter mu_gg 

with function mu_gg_func 

everywhere 



RooStats – Statistical analysis of RooFit models  

• With RooFits one has (almost) limitless possibility to construct 

probability density models  

– With the workspaces one also has the ability to deliver  

such models to statistical tools that are completely  

decoupled from the model construction code.  

Will now focus on the design of those statistical tools 

• The RooStats projected was started in 2007 as  

a joint venture between ATLAS, CMS, the ROOT  

team and myself.  

Goal: to deliver a series of tools that can calculate  

intervals and perform hypothesis tests using a  

variety of statistical techniques 

– Frequentist methods (confidence intervals, hypothesis testing) 

– Bayesian methods (credible intervals, odd-ratios) 

– Likelihood-based methods 
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Confidence intervals: [θ-, θ+],or  θ<X at 95% C.L.  

Hypothesis testing:  p(data|θ=0) = 1.10-7  



RooStats class structure 
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RooStats class structure 
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Abstract interface for procedure 

to calculate a confidence interval 

 

Abstract interface for result 

 

“[θ-, θ+] at 68% C.L”.  

 

“θ<X at 95% C.L.” 

 

Multiple concrete implementations for 

calculators and corresponding result 

containers (reflecting various 

statistical techniques) 

 



RooStats class structure 
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Abstract interface for hypothesis 

tester to calculate a p-value 

 

Concrete result class 

 

“pθ=0=1.1 10-7” 

 

Multiple concrete implementations 

for calculators, corresponding to 

various statistical techniques to 

calculate p-value 



RooStats class structure 
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Concepts of interval calculation 

and hypothesis testing are linked 

for certain (frequentist) statistical methods.  

 

Also has abstract interface for ‘combined calculators’ that 

can perform both types of calculations 

  



Working with RooStats calculators 

• Calculators interface to RooFit via a ‘ModelConfig’ object 

• ModelConfig completes f(x|θ) from workspace with additional 

information to become an unambiguous statistical problem 

specification (together with xobs) 

– E.g. which of parameters θ are ‘of interest’ which are ‘nuisance parameters’. 

– For certain types of complex models, additional info is needed   

 

 

 

 

 

 

 

• Calculator works for any model, no matter how complex 
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Some famous RooFit/RooStats results 

RooFit workspace with 

Atlas Higgs  

combination model  

(23.000 functions,  

1600 parameters) 

RooStats hypothesis testing 

(p-value of bkg hypothesis) 
RooStats interval calculation 

(upper limit intervals at 95%) 



Performance considerations 

• While functionality is (nearly) universal, good computational 
performance for all models requires substantial work behind the 
scenes. 

– Will highlight three techniques that are used to boost performance 

• Heuristic constant-expression detection 

– Identify (highest)-level constant expression in user expression in a given use 
context and prevent unnecessary recalculation of these 

• (Pseudo)-vectorization 

– Reorder calculations to approach concept of vectorization 

• Parallelization 

– Exploit pervasive ability of CPU farms and multi-core host to parallelize 
calculations that intrinsically of a repetitive nature 

• The boundary condition of all optimizations is that user code should 
not need to accommodate these.  

– User probability models are often already complex, must be kept in ‘most 
readable’ representation 

– Use RooFit model introspection to reorganize user functions ‘on the fly’ in 
vectorization-friendly order  
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Optimization of likelihood calculations 

• Likelihood evaluates pdf at all data points, essentially a ‘loop’ 

call 
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- logL(p) = - log f (xi, p)
i=0...n

å

X Y 

1 2 

2 3 

0 1 

-1 5 

3 6 

7 6 

-3 -2 

As written by user, the p.d.f is a  

scalar expression that is unaware of underlying 

repeated calculation of likelihood    



Level-1 optimization of likelihood calculation 

• RooFit can heuristically detect constant terms (depends only on 

observables, not on parameters) are pre-calculated, cached with 

likelihood dataset. Calculation tree modified to omit recalculation of 

g  
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X Y g 

1 2 1.5 

2 3 2.7 

0 1 1.2 

-1 5 0.6 

3 6 9.8 

7 6 3.4 

-3 -2 5.7 



Level-2 optimization of likelihood calculation 

• Can also apply caching strategy to all functions nodes, instead 

of just constant nodes 
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X Y g f m 

1 2 1.5 .. .. 

2 3 2.7 .. .. 

0 1 1.2 .. .. 

-1 5 0.6 .. .. 

3 6 9.8 .. .. 

7 6 3.4 .. .. 

-3 -2 5.7 .. .. 

Depends on a,b 

Depends on m 

To ensure correct calculation:  

Value cache of non-constant function objects 

will be invalidated if dependent parameters 

changed 

Faster than level-1 if non-constant cache 

miss rate <100%  

  



What is the value cache miss rate for non-constant objects? 

• It is quite a bit better than 100% as most MINUIT calls to 

likelihood vary one parameter at a time (to calculate derivative) 

 Computed cached values will often stay valid 

 

 

 

 

 

 

 

 

prevFCN = 5170.289989   FCN=5170.53 FROM MIGRAD  STATUS=INITIATE  6 CALLS  7 TOTAL 

prevFCN = 4495.931306  a=0.9961, b=0.106, c=0.06274,  

prevFCN = 3936.921265  a=0.9967,  

prevFCN = 3936.938281  a=0.9954,  

prevFCN = 3936.907905  a=0.9965,  

prevFCN = 3936.933086  a=0.9956,  

prevFCN = 3936.911321  a=0.9961, b=0.108,  

prevFCN = 3937.05644  b=0.104,  

prevFCN = 3936.790003  b=0.1074,  

prevFCN = 3937.014478  b=0.1046,  

prevFCN = 3936.829929  b=0.106, c=0.06845,  

prevFCN = 3936.934463  c=0.05703,  

prevFCN = 3936.911648  c=0.06688,  

prevFCN = 3936.930463  c=0.05861,  

prevFCN = 3936.913944  a=1, b=-0.02103, c=0.02074,  

prevFCN = 3936.613348  a=0.9982, b=0.04018, c=0.04096,  

Only a changes, caches 

depending on b,c remain valid 

Only b changes, caches 

depending on a,c remain valid 

Only c changes, caches 

depending on b,c remain valid 



From level-2 optimization to vectorization 

• Note that resequencing of calculation in full level-2 optimization 

mode results in ‘natural ordering’ for complete vectorization 
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Level-1 sequence Level-2-max sequence 

m(y0) 

f(m0) 

g(x0) 

Model(f0,g0) 

m(y1) 

f(m1) 

g(x1) 

Model(f1,g1) 

m(y0) 

m(y1) 

m(y2) 
 

f(m0) 

f(m1) 

f(m2) 
 

g(x0) 

g(x1) 

g(x2) 
 

Model(f0,g0) 

Model(f1,g1) 

Model(f2,g2) 

 

m(y2) 

f(m2) 

g(x2) 

Model(f2,g2) 



Work in progress – automatic code vectorization 

• Axel noted in his plenary presentation that ‘vectorization’ is 

invasive… True, but modular structure of RooFit function 

expression allows this invasive reorganization to be performed 

automatically. Aim to vectorize code without making the ‘user 

code’ messy!   

Vectorized sequencing 

Construct custom sequence driver on the fly  

with CLING to eliminate virtual function calls 

Level-2 optimization 

ensures all inputs are  

already in vector form 

 

But, as inputs 

are already always held  

in proxies in user code,  

user code is unaware  

of scalar/vector nature  

of inputs 



Other parallelization techniques – multicore Likelihood calculation 

• Parallelization of calculations already introduce at a higher level 

• Multi-core calculation of likelihood at the granularity of the event 

level, rather than the function call level 

 

 

 

 

 

 

– Trivial use invocation make this already popular with users 

 

 

– But load balancing can become uneven for ‘simultaneous fits’ (not every 

event has the same probability model in that case)  
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MultiCore parallelization 

m(y0) 

f(m0) 

g(x0) 

Model(f0,g0) 

m(y1) 

f(m1) 

g(x1) 

Model(f1,g1) 

m(y2) 

f(m2) 

g(x2) 

Model(f2,g2) 

model->fitTo(data,NumCPU(8),…) 



Parallelization using PROOF 

• Simple parallelization of likelihood calculation using NumCPU(n) 

option of RooAbsPdf::fitTo() very popular, but restricted to 

likelihood calculations 

• Another common CPU-intensive task are toy studies 

 

 

 

 

 

 

 

 

• Have generic interface to PROOF(-lite) to parallelize loop tasks. 

Also used by RooStats for sampling procedures 
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Input model Generate toy MC Fit model  

Repeat  

N times 

Accumulate 

fit statistics 

Distribution of 

- parameter values 

- parameter errors 

- parameter pulls 



Summary 

• RooFit and RooStats allow you to perform advanced statistical data 

analysis 

– LHC Higgs results a prominent example 
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• RooFit provides (almost) limitless  
model building facilities 

– Concept of persistable model workspace 
allows to separate model building and model 
interpretation 

– HistFactory package introduces structured 
model building for binned  likelihood template 
models that are common in LHC analyses 

• RooStats provide a wide set of statistical 
tests that can be performed on RooFit 
models 

– Bayesian, Frequentist and Likelihood-based 
test concepts 

– Wide range op options (Frequentist test 
statistics, Bayesian integration methods, 
asympotic calculators…) 

 
 

 


