
Wouter Verkerke, NIKHEF

RooFit
A tool kit for data modeling in ROOT

(W. Verkerke, D. Kirkby)

RooStats
A tool kit for statistical analysis

(K. Cranmer, L. Moneta, S. Kreiss, G. Kukartsev, G.

Schott,

G. Petrucciani, W. Verkerke)

Wouter Verkerke (NIKHEF)

Introduction

• Statistical data analysis is at

the heart of all (particle)

physics experiments.

• Techniques deployed in HEP

get more and more complicated

 Hunting for ‘difficult signals’

 (Higgs)

 Desire to control systematic

 uncertainties through

 simultaneous fits to control

 measurements

• Nowadays discoveries entail

simultaneous modeling of

hundreds of distributions with

models with over a 1000

parameters  Well beyond

ROOTs ‘TF1’ function classes
Wouter Verkerke, NIKHEF

A structured approach to computational statistical analysis

• A structured approach is needed to be able to describe and use

data models needed for modern HEP analyses

• 1 - Data modeling: construct a model f(x|θ)

• 2 - Statistical inference on θ, given x0 and f(x|θ)

– Parameter estimation ‘θ’ & variance estimation (V(θ))  MINUIT

– Confidence intervals: [θ-, θ+], θ<X at 95% C.L.

hypothesis testing etc:  p(data|θ=0) = 1.10-7

Wouter Verkerke, NIKHEF

fsig ×

SigSel(m; psig) ×

SigDecay(t;qsig,sin(2b))

ÄSigResol(t | dt;rsig)

æ

è
çç

ö

ø
÷÷

é

ë

ê
ê
ê

ù

û

ú
ú
ú
+ (1- fsig)

BkgSel(m; pbkg) ×

BkgDecay(t;qbkg)

ÄBkgResol(t | dt;rbkg)

æ

è
çç

ö

ø
÷÷

é

ë

ê
ê
ê

ù

û

ú
ú
ú

‘xobs’ ‘f(x|θ)’  L(θ)=f(xobs|θ)

 RooFit (since 1999)

 RooFit::HistFactory (since 2010)

 RooStats (since 2007)

RooFit – a toolkit to formulate probability models in C++

• Key concept: represent individual elements of a mathematical

model by separate C++ objects

Wouter Verkerke, NIKHEF

variable RooRealVar

function RooAbsReal

PDF RooAbsPdf

space point RooArgSet

list of space points RooAbsData

integral RooRealIntegral

RooFit class Mathematical concept

),;(qpxF


px,

x


dxxf

x

x


max

min

)(

)(xf


kx


• Functions objects are always ‘trees’ of objects, with pointers

(managed through proxies) expressing relations

RooFit core design philosophy

Gauss(x,μ,σ)

RooRealVar x RooRealVar m RooRealVar s

RooGaussian g

RooRealVar x(“x”,”x”,-10,10) ;
RooRealVar m(“m”,”y”,0,-10,10) ;
RooRealVar s(“s”,”z”,3,0.1,10) ;
RooGaussian g(“g”,”g”,x,m,s) ;

Math

RooFit

diagram

RooFit

code

RooFit: complete model functionality, e.g. sampling (un)binned data

// Generate an unbinned toy MC set
RooDataSet* data = gauss.generate(x,10000) ;

// Generate an binned toy MC set
RooDataHist* data = gauss.generateBinned(x,10000) ;

// Plot PDF

RooPlot* xframe = x.frame() ;

data->plotOn(xframe) ;

xframe->Draw() ;

Example: generate 10000 events from Gaussian p.d.f and show distribution

Can generate both binned and

unbinned datasets

RooFit model functionality – max.likelihood parameter estimation

// ML fit of gauss to data
w::gauss.fitTo(*data) ;
(MINUIT printout omitted)

// Parameters if gauss now
// reflect fitted values
mean.Print() ;
sigma.Print() ;
RooRealVar::mean = 0.0172335 +/- 0.0299542
RooRealVar::sigma = 2.98094 +/- 0.0217306

// Plot fitted PDF and toy data overlaid

RooPlot* xframe = x.frame() ;

data->plotOn(xframe) ;

gauss.plotOn(xframe) ;

PDF

automatically

normalized

to dataset

RooFit implements normalized probability models

• Normalized probability (density) models are the basis of all
fundamental statistical techniques

– Defining feature:

• Normalization guarantee introduces extra complication
in calculation, but has important advantages

– Directly usable in fundamental statistical techniques

– Easier construction of complex models (will shows this in moment)

• RooFit provides built-in support for normalization, taking away down-
side for users, leaving upside

– Default normalization strategy relies on numeric techniques, but user can specify
known (partial) analytical integrals in pdf classes.

Wouter Verkerke, NIKHEF

f (x, p)dxò º1,

f (x, p) ³ 0
 1)(dxxF

 1),(dxdyyxF

The power of conditional probability modeling

• Take following model f(x,y):

what is the analytical form?

• Trivially constructed with

(conditional) probability

density functions!

Wouter Verkerke, NIKHEF

Gauss f(x|a*y+b,1)

Gauss g(y,0,3)

F(x,y) = f(x|y)*g(y)

Coding a conditional product model in RooFit

• Construct each ingredient with a single line of code

Wouter Verkerke, NIKHEF

RooRealVar x(“x”,”x”,-10,10) ;

RooRealVar y(“y”,”y”,-10,10) ;

RooRealVar a(“a”,”a”,0) ;

RooRealVar b(“b”,”b”,-1.5) ;

RooFormulaVar m(“a*y+b”,a,y,b) ;

RooGaussian f(“f”,”f”,x,m,C(1)) ;

RooGaussian g(“g”,”g”,y,C(0),C(3)) ;

RooProdPdf F(“F”,”F”,g,Conditional(f,y)) ;

Gauss f(x,a*y+b,1)

Gauss g(y,0,3)

F(x,y) = f(x|y)*g(y)

Note that code doesn’t care if input

expression is variable or function!

Building power – most needed shapes already provided

• RooFit provides a collection of compiled standard PDF classes

RooArgusBG

RooPolynomial

RooBMixDecay

RooHistPdf

RooGaussian

Basic
Gaussian, Exponential, Polynomial,…

Chebychev polynomial

Physics inspired
ARGUS,Crystal Ball,

Breit-Wigner, Voigtian,

B/D-Decay,….

Non-parametric
Histogram, Kernel estimation

Easy to extend the library: each p.d.f. is a separate C++ class

Individual classes can encapsulate powerful algorithms

• Example: a ‘kernel estimation probability model’

– Construct smooth pdf from unbinned data, using kernel estimation

technique

• Example

• Also available for n-D data

Sample of events
Gaussian pdf

for each event

Summed pdf

for all events

Adaptive Kernel:

width of Gaussian depends

on local event density

 w.import(myData,Rename(“myData”)) ;

 w.factory(“KeysPdf::k(x,myData)”) ;

Advanced modeling building – template morphing

• At LHC shapes are often derived from histograms, instead of

relying on analytical shapes . Construct parametric from

histograms using ‘template morphing’ techniques

Parametric model: f(x|α)

Input

histograms

from simulation

Code example – template morphing

• Example of template morphing

systematic in a binned likelihood

Wouter Verkerke, NIKHEF

L(N |a, s -, s 0, s+) = P(Ni | si(a, si
-, si

0, si
+)

bins

Õ) ×G(0 |a,1)

si(a,...) =
si

0 +a × (si
+ - si

0) "a > 0

si
0 +a × (si

0 - si
-) "a < 0

ì

í
ï

îï

// Construct template models from histograms

w.factory(“HistFunc::s_0(x[80,100],hs_0)”) ;

w.factory(“HistFunc::s_p(x,hs_p)”) ;

w.factory(“HistFunc::s_m(x,hs_m)”) ;

// Construct morphing model

w.factory(“PiecewiseInterpolation::sig(s_0,s_,m,s_p,alpha[-5,5])”) ;

// Construct full model

w.factory(“PROD::model(ASUM(sig,bkg,f[0,1]),Gaussian(0,alpha,1))”) ;

Class from the HistFactory project

(K. Cranmer, A. Shibata, G. Lewis,

L. Moneta, W. Verkerke)

Advanced model building – describe MC statistical

uncertainty

• Histogram-based models have intrinsic uncertainty to MC statistics…

• How to express corresponding shape uncertainty with model params?

– Assign parameter to each histogram bin, introduce Poisson ‘constraint’ on each bin

– ‘Beeston-Barlow’ technique. Mathematically accurate, but introduce results in

complex models with many parameters.

L(N) = P(Ni | si +bi)
bins

Õ

L(N | s,b) = P(Ni | si +bi)
bins

Õ P(si | si
bins

Õ) P(bi | bi
bins

Õ)

L(N |g s,gb) = P(Ni |g s,isi +gb,ibi)
bins

Õ P(si |g s,isi
bins

Õ) P(bi |gb,ibi
bins

Õ)

Binned likelihood

with rigid template

Response function

w.r.t. s, b as parameters

Subsidiary measurements

of s ,b from s~,b~

Normalized NP model (nominal value of all γ is 1)

Code example – Beeston-Barlow

• Beeston-Barlow-(lite) modeling

of MC statistical uncertainties

Wouter Verkerke, NIKHEF

L(N |g) = P(Ni |gi(si +bi))
bins

Õ P(si +bi |g i(si +bi
bins

Õ))

// Import template histogram in workspace

 w.import(hs) ;

// Construct parametric template models from histograms
// implicitly creates vector of gamma parameters

 w.factory(“ParamHistFunc::s(hs)”) ;

 // Product of subsidiary measurement

 w.factory(“HistConstraint::subs(s)”) ;

 // Construct full model

 w.factory(“PROD::model(s,subs)”) ;

Code example: BB + morphing

• Template morphing model

with Beeston-Barlow-lite

MC statistical uncertainties

L(N | s,b) = P(Ni |g i ×[si(a, si
-, si

0, si
+)+bi])

bins

Õ P(si +bi |gi ×[si +bi]
bins

Õ)G(0 |a,1)

si(a,...) =
si

0 +a × (si
+ - si

0) "a > 0

si
0 +a × (si

0 - si
-) "a < 0

ì

í
ï

îï

 // Construct parametric template morphing signal model

 w.factory(“ParamHistFunc::s_p(hs_p)”) ;

 w.factory(“HistFunc::s_m(x,hs_m)”) ;

 w.factory(“HistFunc::s_0(x[80,100],hs_0)”) ;

 w.factory(“PiecewiseInterpolation::sig(s_0,s_,m,s_p,alpha[-5,5])”) ;

 // Construct parametric background model (sharing gamma’s with s_p)

 w.factory(“ParamHistFunc::bkg(hb,s_p)”) ;

 // Construct full model with BB-lite MC stats modeling

 w.factory(“PROD::model(ASUM(sig,bkg,f[0,1]),
 HistConstraint({s_0,bkg}),Gaussian(0,alpha,1))”) ;

From simple to realistic models: composition techniques

• Realistic models with signal and bkg, and with control regions

built from basic shapes using addition, product, convolution,

simultaneous operator classes

SUM PROD CONV SIMUL

+ *

= = =
=

Ä Å

Graphical example of realistic complex models

variables

function objects

Expression graphs are

autogenerated using

pdf->graphVizTree(“file.dot”)

Abstracting model building from model use - 1

• For universal statistical analysis tools (RooStats), must be have

universal functionality of models (independent of structure and

complexity)

• Was already possible in RooFit since 1999

Wouter Verkerke, NIKHEF

RooAbsPdf

RooDataSet

RooAbsData

model.fitTo(data)

data = model.generate(x,1000)

Fitting Generating

Abstracting model building from model use - 2

• Must be able to practically separate model building code from
statistical analysis code.

• Solution: you can persist RooFit models of arbitrary complexity in
‘workspace’ containers

• The workspace concept has revolutionized the way people share
and combine analyses!

Wouter Verkerke, NIKHEF

RooWorkspace

RooWorkspace w(“w”) ;

w.import(sum) ;

w.writeToFile(“model.root”) ;

model.root

Realizes complete and practical

factorization of process of

building and using likelihood functions!

Using a workspace file given to you…

Wouter Verkerke, NIKHEF Wouter Verkerke, NIKHEF

RooWorkspace

// Resurrect model and data

TFile f(“model.root”) ;

RooWorkspace* w = f.Get(“w”) ;

RooAbsPdf* model = w->pdf(“sum”) ;

RooAbsData* data = w->data(“xxx”) ;

// Use model and data

model->fitTo(*data) ;

RooPlot* frame =
 w->var(“dt”)->frame() ;

data->plotOn(frame) ;

model->plotOn(frame) ;

Persistence of really complex models works too!

F(x,p)

x p

Atlas Higgs combination model (23.000 functions, 1600

parameters)

Model has ~23.000 function objects, ~1600 parameters

Reading/writing of full model takes ~4 seconds

ROOT file with workspace is ~6 Mb

An excursion – Collaborative analyses with workspaces

• Workspaces allow to share and modify very complex analyses

with very little technical knowledge required

• Example: Higgs coupling fits

Wouter Verkerke, NIKHEF

Full

Higgs

model

Signal

strength

in 5

channels

Reparametrize

in terms of

fermion, boson

scale factors

Confidence

intervals

on Higgs

fermion,

boson

couplings

An excursion – Collaborative analyses with workspaces

• How can you reparametrize existing Higgs likelihoods in

practice?

• Write functions expressions corresponding to new

parameterization

• Edit existing model

Wouter Verkerke, NIKHEF

RooFormulaVar mu_gg_func(“mu_gg_func”,
 “(KF2*Kg2)/(0.75*KF2+0.25*KV2)”,
 KF2,Kg2,KV2) ;

w.import(mu_gg_func) ;

w.factory(“EDIT::newmodel(model,mu_gg=mu_gg_gunc)”) ;

Top node of original

Higgs combination pdf

Top node of modified

Higgs combination pdf
Modification prescription:

replace parameter mu_gg

with function mu_gg_func

everywhere

RooStats – Statistical analysis of RooFit models

• With RooFits one has (almost) limitless possibility to construct

probability density models

– With the workspaces one also has the ability to deliver

such models to statistical tools that are completely

decoupled from the model construction code.

Will now focus on the design of those statistical tools

• The RooStats projected was started in 2007 as

a joint venture between ATLAS, CMS, the ROOT

team and myself.

Goal: to deliver a series of tools that can calculate

intervals and perform hypothesis tests using a

variety of statistical techniques

– Frequentist methods (confidence intervals, hypothesis testing)

– Bayesian methods (credible intervals, odd-ratios)

– Likelihood-based methods

Wouter Verkerke, NIKHEF

Confidence intervals: [θ-, θ+],or θ<X at 95% C.L.

Hypothesis testing:  p(data|θ=0) = 1.10-7

RooStats class structure

Wouter Verkerke, NIKHEF

RooStats class structure

Wouter Verkerke, NIKHEF

Abstract interface for procedure

to calculate a confidence interval

Abstract interface for result

“[θ-, θ+] at 68% C.L”.

“θ<X at 95% C.L.”

Multiple concrete implementations for

calculators and corresponding result

containers (reflecting various

statistical techniques)

RooStats class structure

Wouter Verkerke, NIKHEF

Abstract interface for hypothesis

tester to calculate a p-value

Concrete result class

“pθ=0=1.1 10-7”

Multiple concrete implementations

for calculators, corresponding to

various statistical techniques to

calculate p-value

RooStats class structure

Wouter Verkerke, NIKHEF

Concepts of interval calculation

and hypothesis testing are linked

for certain (frequentist) statistical methods.

Also has abstract interface for ‘combined calculators’ that

can perform both types of calculations

Working with RooStats calculators

• Calculators interface to RooFit via a ‘ModelConfig’ object

• ModelConfig completes f(x|θ) from workspace with additional

information to become an unambiguous statistical problem

specification (together with xobs)

– E.g. which of parameters θ are ‘of interest’ which are ‘nuisance parameters’.

– For certain types of complex models, additional info is needed

• Calculator works for any model, no matter how complex

Wouter Verkerke, NIKHEF

Some famous RooFit/RooStats results

RooFit workspace with

Atlas Higgs

combination model

(23.000 functions,

1600 parameters)

RooStats hypothesis testing

(p-value of bkg hypothesis)
RooStats interval calculation

(upper limit intervals at 95%)

Performance considerations

• While functionality is (nearly) universal, good computational
performance for all models requires substantial work behind the
scenes.

– Will highlight three techniques that are used to boost performance

• Heuristic constant-expression detection

– Identify (highest)-level constant expression in user expression in a given use
context and prevent unnecessary recalculation of these

• (Pseudo)-vectorization

– Reorder calculations to approach concept of vectorization

• Parallelization

– Exploit pervasive ability of CPU farms and multi-core host to parallelize
calculations that intrinsically of a repetitive nature

• The boundary condition of all optimizations is that user code should
not need to accommodate these.

– User probability models are often already complex, must be kept in ‘most
readable’ representation

– Use RooFit model introspection to reorganize user functions ‘on the fly’ in
vectorization-friendly order

Wouter Verkerke, NIKHEF

Optimization of likelihood calculations

• Likelihood evaluates pdf at all data points, essentially a ‘loop’

call

Wouter Verkerke, NIKHEF

- logL(p) = - log f (xi, p)
i=0...n

å

X Y

1 2

2 3

0 1

-1 5

3 6

7 6

-3 -2

As written by user, the p.d.f is a

scalar expression that is unaware of underlying

repeated calculation of likelihood

Level-1 optimization of likelihood calculation

• RooFit can heuristically detect constant terms (depends only on

observables, not on parameters) are pre-calculated, cached with

likelihood dataset. Calculation tree modified to omit recalculation of

g

Wouter Verkerke, NIKHEF

X Y g

1 2 1.5

2 3 2.7

0 1 1.2

-1 5 0.6

3 6 9.8

7 6 3.4

-3 -2 5.7

Level-2 optimization of likelihood calculation

• Can also apply caching strategy to all functions nodes, instead

of just constant nodes

Wouter Verkerke, NIKHEF

X Y g f m

1 2 1.5

2 3 2.7

0 1 1.2

-1 5 0.6

3 6 9.8

7 6 3.4

-3 -2 5.7

Depends on a,b

Depends on m

To ensure correct calculation:

Value cache of non-constant function objects

will be invalidated if dependent parameters

changed

Faster than level-1 if non-constant cache

miss rate <100%

What is the value cache miss rate for non-constant objects?

• It is quite a bit better than 100% as most MINUIT calls to

likelihood vary one parameter at a time (to calculate derivative)

 Computed cached values will often stay valid

prevFCN = 5170.289989 FCN=5170.53 FROM MIGRAD STATUS=INITIATE 6 CALLS 7 TOTAL

prevFCN = 4495.931306 a=0.9961, b=0.106, c=0.06274,

prevFCN = 3936.921265 a=0.9967,

prevFCN = 3936.938281 a=0.9954,

prevFCN = 3936.907905 a=0.9965,

prevFCN = 3936.933086 a=0.9956,

prevFCN = 3936.911321 a=0.9961, b=0.108,

prevFCN = 3937.05644 b=0.104,

prevFCN = 3936.790003 b=0.1074,

prevFCN = 3937.014478 b=0.1046,

prevFCN = 3936.829929 b=0.106, c=0.06845,

prevFCN = 3936.934463 c=0.05703,

prevFCN = 3936.911648 c=0.06688,

prevFCN = 3936.930463 c=0.05861,

prevFCN = 3936.913944 a=1, b=-0.02103, c=0.02074,

prevFCN = 3936.613348 a=0.9982, b=0.04018, c=0.04096,

Only a changes, caches

depending on b,c remain valid

Only b changes, caches

depending on a,c remain valid

Only c changes, caches

depending on b,c remain valid

From level-2 optimization to vectorization

• Note that resequencing of calculation in full level-2 optimization

mode results in ‘natural ordering’ for complete vectorization

Wouter Verkerke, NIKHEF

Level-1 sequence Level-2-max sequence

m(y0)

f(m0)

g(x0)

Model(f0,g0)

m(y1)

f(m1)

g(x1)

Model(f1,g1)

m(y0)

m(y1)

m(y2)

f(m0)

f(m1)

f(m2)

g(x0)

g(x1)

g(x2)

Model(f0,g0)

Model(f1,g1)

Model(f2,g2)

m(y2)

f(m2)

g(x2)

Model(f2,g2)

Work in progress – automatic code vectorization

• Axel noted in his plenary presentation that ‘vectorization’ is

invasive… True, but modular structure of RooFit function

expression allows this invasive reorganization to be performed

automatically. Aim to vectorize code without making the ‘user

code’ messy!

Vectorized sequencing

Construct custom sequence driver on the fly

with CLING to eliminate virtual function calls

Level-2 optimization

ensures all inputs are

already in vector form

But, as inputs

are already always held

in proxies in user code,

user code is unaware

of scalar/vector nature

of inputs

Other parallelization techniques – multicore Likelihood calculation

• Parallelization of calculations already introduce at a higher level

• Multi-core calculation of likelihood at the granularity of the event

level, rather than the function call level

– Trivial use invocation make this already popular with users

– But load balancing can become uneven for ‘simultaneous fits’ (not every

event has the same probability model in that case)

Wouter Verkerke, NIKHEF

MultiCore parallelization

m(y0)

f(m0)

g(x0)

Model(f0,g0)

m(y1)

f(m1)

g(x1)

Model(f1,g1)

m(y2)

f(m2)

g(x2)

Model(f2,g2)

model->fitTo(data,NumCPU(8),…)

Parallelization using PROOF

• Simple parallelization of likelihood calculation using NumCPU(n)

option of RooAbsPdf::fitTo() very popular, but restricted to

likelihood calculations

• Another common CPU-intensive task are toy studies

• Have generic interface to PROOF(-lite) to parallelize loop tasks.

Also used by RooStats for sampling procedures

Wouter Verkerke, NIKHEF

Input model Generate toy MC Fit model

Repeat

N times

Accumulate

fit statistics

Distribution of

- parameter values

- parameter errors

- parameter pulls

Summary

• RooFit and RooStats allow you to perform advanced statistical data

analysis

– LHC Higgs results a prominent example

Wouter Verkerke, NIKHEF

• RooFit provides (almost) limitless
model building facilities

– Concept of persistable model workspace
allows to separate model building and model
interpretation

– HistFactory package introduces structured
model building for binned likelihood template
models that are common in LHC analyses

• RooStats provide a wide set of statistical
tests that can be performed on RooFit
models

– Bayesian, Frequentist and Likelihood-based
test concepts

– Wide range op options (Frequentist test
statistics, Bayesian integration methods,
asympotic calculators…)

