
Evaluating Predictive Models of
Software Quality

Vincenzo Ciaschini, Marco Canaparo,
Elisabetta Ronchieri, Davide Salomoni
INFN CNAF, Bologna, Italy
CHEP 2013, October 14 - 18, 2013, Amsterdam, The Netherlands

Motivation

• Can we predict whether our products and
processes will meet goals for quality during
the development life cycle?

• Specifically, can we determine the risk factor
associated to our products in relation to
reliability and maintainability in order to
prevent faults?

10/15/2013 CHEP 2013, October 14 - 18, 2013, Amsterdam, The Netherlands 2

Why? Motivation again

10/15/2013 CHEP 2013, October 14 - 18, 2013, Amsterdam, The Netherlands 3

• To produce better software at lower cost with
predictable resource allocations and time
estimations.

• To detect defects from faults early in order to mi
their consequences.

• To estimate time to the products’ deployment.

• To predict and improve quality of the products
and the development process.

What? Background

• The predictive model of software quality
determines software quality level periodically and
indicates software problems early.

• Over the last few decades several predictive
methods have been used in the development of
fault predictive models:
– Regression;

– Statistical;

– Machine learning;

– Others.

10/15/2013 CHEP 2013, October 14 - 18, 2013, Amsterdam, The Netherlands 4

Context? Background

• The main context of these models is closed to
NASA’s based projects: however open source
systems are also considered.

• The C/C++ language dominates in the studies of
these models [1]:

– Over half of the models are built by analysing C/C++
code;

– 20% of models are for Java code.

10/15/2013 CHEP 2013, October 14 - 18, 2013, Amsterdam, The Netherlands 5

Measure of performances? Background

• In case of continuous output data, the performance of models
is based on:
– Error rates such as mean square error, mean absolute error, standard

error, and absolute error;

– Regression coefficients such as regression R2 (linear), cubic R2, and
regression R2 (non-linear);

– Correlation test such as Pearson and Spearman;

– Variance significance test such as goodness-of-fit, Chi-Square and p-
value.

10/15/2013 CHEP 2013, October 14 - 18, 2013, Amsterdam, The Netherlands 6

Experiment Description

10/15/2013 CHEP 2013, October 14 - 18, 2013, Amsterdam, The Netherlands 7

• The experiment consists of evaluating software quality of
some EMI products by using predictive models:
– As first approximation, we have selected the INFN software

products of the EMI distributions [2] (i.e. EMI 1, EMI 2, and EMI
3), such as CREAM, StoRM, VOMS, WMS, WNoDeS, and parts of
YAIM;

– We have measured some static metrics [3] such as N. Files, N.
Comments, N. Code, N. Languages, N. Blanks, and McCabe, for
all the software products in each EMI distribution;

– We have used open source tools to measure the metrics such as
cloc [4], pmccabe [5] and radon [6];

– We have collected defects from the release notes of each
software products [7];

– We have used statistical predictive model based on the
discriminant analysis [8], [9], [10].

Software Packages

10/15/2013 CHEP 2013, October 14 - 18, 2013, Amsterdam, The Netherlands 8

Products EMI1 base/updates EMI2 base/updates EMI3 base/updates

CREAM glite-ce-cream-1.13.x-x
glite-ce-cream-api-java-1.13.x-x
glite-ce-cream-cli-1.13.x-x
glite-ce-cream-client-api-c-1.13.2-3
glite-ce-cream-utils-1.1.0-3
glite-ce-yaim-cream-ce-4.2.x-x

glite-ce-cream-1.14.x-x
glite-ce-cream-api-java-1.14.x-x
glite-ce-cream-cli-1.14.x-x
glite-ce-cream-client-api-c-1.14.x-x
glite-ce-cream-utils-1.2.x-x
glite-ce-yaim-cream-ce-4.3.x-x

glite-ce-cream-1.x.x-x
glite-ce-cream-api-java-1.x.x-x
glite-ce-cream-cli-1.15.x-x
glite-ce-cream-client-api-c-1.15.x-x
glite-ce-cream-utils-1.3.x-x
glite-ce-yaim-cream-ce-4.4.x-x

VOMS voms-2.0.x-x
voms-admin-client-2.0.16-1
voms-admin-server-2.6.1-1
voms-api-java-2.0.x-x
voms-clients-2.0.x-x
voms-devel-2.0.x-x
voms-mysql-3.1.5-1
voms-oracle-3.1.12-1
voms-server-2.0.x-x
yaim-voms-1.x.x-x

voms-2.0.x-x
voms-admin-client-2.0.17-1
voms-admin-server-2.7.0-1
voms-api-java-2.0.x-x
voms-clients-2.0.8-1
voms-devel-2.0.8-1
voms-mysql-3.1.6-1
voms-oracle-3.1.12-1
voms-server-2.0.8-1
yaim-voms-1.1.1-1

voms-2.0.x-x
voms-admin-client-x.x.x-x
voms-admin-server-3.0.x-x
voms-api-java-3.0.x-x
voms-clients-3.0.x-x
voms-devel-2.0.8-1
voms-mysql-3.1.6-1
voms-oracle-3.1.15-2
voms-server-2.0.8-1
yaim-voms-1.1.1-1

StoRM storm-backend-server-1.x.x-x
storm-common-1.1.x-x
storm-dynamic-info-provider-1.7.x-x
storm-frontend-server-1.7.x-x
storm-globus-gridftp-server-1.1.0-x
storm-srm-client-1.5.0-x
yaim-storm-4.1.x-x

storm-backend-server-1.x.x-x
storm-dynamic-info-provider-1.7.4-3
storm-frontend-server-1.8.0-x
storm-globus-gridftp-server-1.2.0-4
storm-gridhttps-plugin-1.0.3-x
storm-gridhttps-server-1.1.0-3
storm-pre-assembled-configuration-1.0.0-6
storm-srm-client-1.6.0-6
tstorm-1.2.1-2
yaim-storm-4.2.x-x

storm-backend-server-1.11.0-43
storm-dynamic-info-provider-1.7.4-4
storm-frontend-server-1.8.1-1
storm-globus-gridftp-server-1.2.0-5
storm-gridhttps-plugin-1.1.0-4
storm-gridhttps-server-2.0.0-230
storm-pre-assembled-configuration-1.1.0-8
storm-srm-client-1.6.0-7
tstorm-2.0.1-13
yaim-storm-4.3.0-21

YAIM glite-yaim-clients-5.0.0-1
glite-yaim-core-5.0.0-1

glite-yaim-clients-5.0.1-2
glite-yaim-core-5.1.0-1

glite-yaim-clients-5.2.0-1
glite-yaim-core-5.1.2-1

‘x’ means that the specified source package in a EMI distribution has been updated.

Software Packages

10/15/2013 CHEP 2013, October 14 - 18, 2013, Amsterdam, The Netherlands 9

Products EMI1 base/updates EMI2 base/updates EMI3 base/updates

WMS wms-broker-3.3.x-x
wms-brokerinfo-3.3.1-3
wms-brokerinfo-access-3.3.2-3
wms-classad-plugin-3.3.1-3
wms-common-3.3.x-x
wms-configuration-3.3.x-x
wms-helper-3.3.x-x
wms-ice-3.3.x-x
wms-ism-3.3.x-x
wms-jobsubmission-3.3.x-x
wms-manager-3.3.x-x
wms-matchmaking-3.3.x-x
wms-purger-3.3.x-x
wms-ui-api-python-3.3.3-3
wms-ui-commands-3.3.3-3
wms-ui-configuration-3.3.2-3
wms-utils-classad-3.2.2-2
wms-utils-exception-3.2.2-2
wms-wmproxy-3.3.x-x
wms-wmproxy-api-cpp-3.3.3-3
wms-wmproxy-api-java-3.3.3-3
wms-wmproxy-api-python-3.3.3-3
wms-wmproxy-interface-3.3.3-3
yaim-wms-4.1.x-x

wms-broker-3.4.0-4
wms-brokerinfo-3.4.0-4
wms-brokerinfo-access-3.4.0-4
wms-classad-plugin-3.4.0-4
wms-common-3.4.0-5
wms-configuration-3.4.0-5
wms-helper-3.4.0-5
wms-ice-3.4.0-7
wms-ism-3.4.0-7
wms-jobsubmission-3.4.0-9
wms-manager-3.4.0-6
wms-matchmaking-3.4.0-6
wms-purger-3.4.0-4
wms-ui-api-python-3.4.0-5
wms-ui-commands-3.4.0-x
wms-ui-configuration-3.3.2-3
wms-utils-classad-3.3.0-2
wms-utils-exception-3.3.0-2
wms-wmproxy-3.4.0-7
wms-wmproxy-api-cpp-3.4.0-4
wms-wmproxy-api-java-3.4.0-4
wms-wmproxy-api-python-3.4.0-4
wms-wmproxy-interface-3.4.0-x
yaim-wms-4.2.0-6

wms-brokerinfo-access-3.5.0-3

wms-common-3.x.x-x
wms-configuration-3.x.x-x
wms-core-3.5.0-7

wms-ice-3.5.0-4
wms-interface-3.x.x-x

wms-jobsubmission-3.5.0-3

wms-purger-3.5.0-3
wms-ui-api-python-3.5.0-3
wms-ui-commands-3.5.x-x

wms-utils-classad-3.4.x-x
wms-utils-exception-3.4.x-x

wms-wmproxy-api-cpp-3.5.0-3

yaim-wms-4.2.0-6

WNoDeS - wnodes-bait-2.0.x-x
wnodes-hypervisor-2.0.x-x
wnodes-manager-2.0.x-x
wnodes-nameserver-2.0.x-x
wnodes-site-specific-2.0.x-x
wnodes-utils-2.0.x-x

wnodes-accounting-1.0.0-4
wnodes-bait-2.0.8-3
wnodes-cachemanager-2.0.1-3
wnode-cli-1.0.3-12
wnodes-cloud-1.0.0-7
wnodes-hypervisor-2.0.5-9
wnodes-manager-2.0.3-5
wnodes-nameserver-2.0.4-3
wnodes-site-specific-2.0.2-3
wnodes-utils-2.0.4-3

‘x’ means that the specified source package in a EMI distribution has been updated.

Metrics

10/15/2013 CHEP 2013, October 14 - 18, 2013, Amsterdam, The Netherlands 10

Size Category Descriptions

N. Files Determines the number of files in a software package;

N. Blank Determines the number of blank lines found in the files of the software package.

N. Comments Determines the number of comment lines found in the files of the software package;

N. Code Indicates the number of code lines found in the files of the software package. A very high count
might indicate that a type or method might be hard to maintain.

N. Languages Determines the number of programming languages supported in the software package;

N. Extensions Determines the number of extensions found in the software package.

DIRECT MEASURES

Quality Category Descriptions

Defects Determines the reported defects calculated at the end of each release.

INDIRECT MEASURES

Complexity Category Descriptions

McCabe cyclomatic complexity Determines the complexity of a section of source code by measuring the number of linearly
independent paths in the flow of the source code. A complex control flow will require more
tests to achieve good code coverage and will penalize its maintanability.

Metrics Tools

10/15/2013 CHEP 2013, October 14 - 18, 2013, Amsterdam, The Netherlands 11

Names Descriptions Languages

cloc counts blank lines, comment lines, and physical lines of source code. C, C++, Python, Java, Perl,
Bourne Shell, C Shell, etc

pmccabe calculates McCabe-style cyclomatic complexity for C and C++ source code. C, C++

radon calculates various metrics from the source code such as McCabe’s cyclomatic
complexity, raw metrics (such as SLOC, comment lines, and blank lines), Halstead
metrics, and Maintainability Index.

python

pylint checks that a module satisfy a coding standard, detects duplicated code and other
more.

python

findbugs identifies bug patterns. Java

javancss measures two standard metrics: McCabe-style cyclomatic complexity and source
statements.

Java

Size Metrics’ Measures Interpretation

10/15/2013 CHEP 2013, October 14 - 18, 2013, Amsterdam, The Netherlands 12

N. Code ≥ 10k N. Blanks ≥ 10k N. Comments ≥ 10k N. Languages ≥ 4 N. Files > 200

glite-ce-cream-cli,
voms, storm-
frontend-server,
and wms-ice
might be the most
complicated
packages to
maintain due to
the high number
of code lines.

glite-ce-cream-
client-api-c, voms-
admin-server,
storm-backend-
server, and wms-
common might
falsify the
productivity level
of the
correspondent
software product
because of the
high number of
blank lines.

glite-ce-cream-client-
api-c, voms-admin-
server, storm-backend-
server, and wms-
common might falsify
the productivity level
of the correspondent
software product
because of the high
number of comment
lines.

storm-backend-server,
voms, and glite-ce-
cream-utils might be
ported on other
platforms with difficulty
containing at least four
programming languages.
The supported
languages such as C
Shell, Bourne Shell,
Python, Java, C++ and C
are distributed among
the software packages
and might contribute in
reducing team effort for
their maintainability.

glite-ce-crema-cli,
voms, voms-admin-
server, storm-
backend-server, and
storm-backend-
frontend might be
maintained with
difficulties over time
due the the high
number of files.

• Per software products (CREAM, VOMS, StoRM, WMS, WNoDeS, YAIM) in each EMI
distribution:

• The following considerations are per software packages in each distribution.

𝑇𝑜𝑡. 𝑁. 𝐹𝑖𝑙𝑒𝑠(𝐸𝑀𝐼𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛, 𝑆𝑜𝑓𝑡𝑤𝑎𝑟𝑒𝑃𝑎𝑐𝑘𝑎𝑔𝑒)

=
407 2872 1063 1269 0 31
723 1605 1034 1229 104 31
680 1699 1521 923 256 31

𝑇𝑜𝑡. 𝑁. 𝐶𝑜𝑑𝑒(𝐸𝑀𝐼𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛, 𝑆𝑜𝑓𝑡𝑤𝑎𝑟𝑒𝑃𝑎𝑐𝑘𝑎𝑔𝑒)

=
124806 553930 278625 790149 0 2837
151919 465238 393053 737718 38564 2966
73929 464051 419887 336486 61461 2966

McCabe Complexity Metric’s Measures
Interpretation

10/15/2013 CHEP 2013, October 14 - 18, 2013, Amsterdam, The Netherlands 13

• The measure of this metric provides for each block the score of complexity ranked
as follows [6]:

– 1-5: low- simple block;

– 6-10 : low-well structured and stable block;

– 11-20: moderate-slightly complex block;

– 21-30: more than moderate – more complex block;

– 31-40: high-complex block, alarming;

– 41+: very high-error prone.

• The following considerations are for software products in each distribution:

• Concerning the C/C++ code:

– the main cause is the inclusion of external software in the package like std2soap.c file;

– furthermore these types of blocks remain constant or increase over the EMI
distributions.

Issues C++/C Python Java

Alarming Blocks CREAM, VOMS, StoRM, WMS WMS, WNoDeS CREAM, VOMS, StoRM

Error Prone Blocks CREAM, VOMS, StoRM, WMS WMS, WNoDeS CREAM, VOMS, StoRM

INFN Quality Measures: Defects

10/15/2013 CHEP 2013, October 14 - 18, 2013, Amsterdam, The Netherlands 14

0.0000
0.0020
0.0040
0.0060
0.0080
0.0100

C
R

EA
M

V
O

M
S

St
o

R
M

W
M

S

W
N

o
D

eS

YA
IM

EMI1

EMI2

EMI3

D
ef

ec
ts

 p
e

r
N

. C
o

d
e

Defect Density = N. Defects / N. Code

• Per software products (CREAM,
VOMS, StoRM, WMS, WNoDeS,
YAIM) in each EMI distribution:

𝑇𝑜𝑡. 𝑁. 𝐷𝑒𝑓𝑒𝑐𝑡𝑠(𝐸𝑀𝐼𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛, 𝑆𝑜𝑓𝑡𝑤𝑎𝑟𝑒𝑃𝑎𝑐𝑘𝑎𝑔𝑒)

=
30 41 57 70 0 25
62 21 17 51 27 11
15 32 31 16 19 2

• Defects decreased over the EMI
distributions with the exclusion of
VOMS and StoRM products.

• They were related to code, build and

package, documentation.

Defect Density vs software product size

0.0000

0.0050

0.0100
CREAM

VOMS

StoRM

WMS

WNoDeSD
ef

ec
t

D
en

si
ty

N. Code

Statistical Evaluation

• Considering all the software products (i.e. CREAM,
VOMS, StoRM, WMS, WNoDeS, and YAIM) and the
collected data for size, complexity and quality metrics,
for each distribution firstly:
– we have determined the level of risk/importance of each

metric, and the level of risk of each software product to be
fault prone by considering the discriminant analysis
method that is the most suitable method in finding fault
prone software products [9];

– we have predicted the defects by using size and complexity
metrics [10].

• Secondly we have evaluated the impact of this
information in the EMI distributions.

10/15/2013 CHEP 2013, October 14 - 18, 2013, Amsterdam, The Netherlands 15

Statistical Evaluation
Metrics Level of Risk

EMI1 EMI2 EMI3

N. Files 1.4982 1.3285 1.0588

N. Comments 2.0343 1.8043 1.0915

N. Blanks 2.0051 1.7247 1.1083

N. Code 2.0031 1.8014 1.1446

N. Extensions 2.0969 1.7565 0.7969

N. Languages 2.0794 1.7626 0.7516

McCabe: 1-5 1.9479 1.5444 0.7223

McCabe: 6-10 1.9686 1.5924 0.6522

McCabe: 11-20 2.0065 1.5401 0.5921

McCabe: 21-30 2.0135 1.2134 0.9339

McCabe: 31-40 1.9202 1.9730 0.7519

McCabe: 41+ 1.8569 1.5825 1.0012

N. Defects 1.8158 1.9910 0.9081

10/15/2013 CHEP 2013, October 14 - 18, 2013, Amsterdam, The Netherlands 16

Software
Products

Is Fault Prone?
EMI1 EMI2 EMI3

CREAM 0.3474*106 0.3833*106 0.12830*106

VOMS 1.5559*106 1.1552*106 0.73054*𝟏𝟎𝟔

StoRM 0.7913*106 0.9699*106 0.64969*106

WMS 2.1616*𝟏𝟎𝟔 1.8032*𝟏𝟎𝟔 0.55260*106

WNoDeS N.A. 0.0937*106 0.09552*106

YAIM 0.0099*𝟏𝟎𝟔 0.0090*𝟏𝟎𝟔 0.00566*𝟏𝟎𝟔

The minimum value

The maximum value

Software Products Predicted Defects
EMI1 EMI2 EMI3

CREAM 19 23 13

VOMS 73 62 62

StoRM 39 53 56

WMS 102 96 46

WNoDeS 0 9 11

YAIM 4 4 4

Statistical Evaluation

10/15/2013 CHEP 2013, October 14 - 18, 2013, Amsterdam, The Netherlands 17

Parameters CREAM
EMI1 EMI2 EMI3

Level of Risk 0.3474*106 0.3833*106 0.1283*106

Predicted
Defects

19 23 13

Detected
Defects

30 62 15

Parameters StoRM
EMI1 EMI2 EMI3

Level of Risk 0.7913*106 0.9699*106 0.6497*106

Predicted
Defects

39 53 56

Detected
Defects

57 17 31

Parameters WNoDeS
EMI1 EMI2 EMI3

Level of Risk 0 0.0937*106 0.0955*106

Predicted
Defects

0 9 11

Detected
Defects

0 27 19

Parameters YAIM
EMI1 EMI2 EMI3

Level of Risk 0.0099*106 0.0090*106 0.0057*106

Predicted
Defects

4 4 4

Detected
Defects

25 11 2

Parameters VOMS
EMI1 EMI2 EMI3

Level of Risk 1.5559*106 1.1552*106 0.7305*106

Predicted
Defects

73 62 62

Detected
Defects

41 21 32

Parameters WMS
EMI1 EMI2 EMI3

Level of Risk 2.1616*106 1.8032*106 0.5526*106

Predicted
Defects

102 96 46

Detected
Defects

70 51 16

Statistical Evaluation

10/15/2013 CHEP 2013, October 14 - 18, 2013, Amsterdam, The Netherlands 18

0
20
40
60
80

Pred.
Defects

Det.
Defects

CREAM

VOMS

StoRM

WMS

WNoDeS

YAIM

0
20
40
60
80

Pred.
Defects

Det.
Defects

0

20

40

60

Pred.
Defects

Det.
Defects

0

50

100

150

EM
I1

EM
I2

EM
I3

Pred.
Defects

Det.
Defects

0
10
20
30
40

Pred.
Defects

Det.
Defects

0

10

20

30

Pred.
Defects

Det.
Defects

Conclusions

• Considering the available data and the detected defects the
statistical model with the discriminant analysis method
predicted the risk of being fault prone with a precision of
83%. This does not translate to precision in determining
the number of defects, that was indeed wildly inaccurate.

• Their inputs are metrics’ measures that can come from
existing software.

• Their precisions improve with the amount of data available.
• The above result shows that the effort necessary to learn

this model will be repaid during the testing and quality
assurance phase by suggesting which modules are more
error prone and therefore should receive greater attention.

10/15/2013 CHEP 2013, October 14 - 18, 2013, Amsterdam, The Netherlands 19

References

[1] Sara Beecham, Tracy Hall, David Bowes, David Gray, Steve Counsell, Sue Black, “A
Systematic Review of Fault Prediction approaches used in Software Engineering”, Lero
Technical Report Lero-TR-2010-04.
[2] Stephen H. Kan, “Metrics and Models in Software Quality Engineering”, Addison-
Wesley Longman Publishing Co., Inc. Boston, MA, USA 2002
[3] Cristina Aiftimiei, Andrea Ceccanti, Danilo Dongiovanni, Andrea Di Meglio,
Francesco Giacomini, “Improving the quality of EMI Releases by leveraging the EMI
Testing Infrastructure,” 2012 Journal of Physics: Conference Series Volume 396 Part 5.
[4] CLOC – Count Lines of Code, http://cloc.sourceforge.net.
[5] “pmccabe” package: Ubuntu, https://launchpad.net/ubuntu/+source/pmccabe.
[6] radon 0.4.3: Python Package Index, https://pypi.python.org/pypi/radon.
[7] Releases – European Middleware Initiative, www.eu-emi.eu/release.
[8] Jiang Zheng, Laurie Williams, Nachiappan Nagappan, Will Snipes, John P. Hudepohl,
Mladen A. Vouk, “On the value of static analysis for fault detection in software”, IEEE
Transaction on Software Engineering, Vol. 32, No. 4, April 2006.
[9] Gege Guo, and Ping Guo, “Experimental Study of Discriminant Method with
Application to Fault-Prone Module Detection”, Proc. Of 2008 International Conference
on Computational Intelligence and Security, December 2008.
[10] Norman Fenton, Paul Krause and Martin Neil, “A Probabilistic Model for Software
Defect Prediction”, IEEE Transaction on Software Engineering, 2001.

10/15/2013 CHEP 2013, October 14 - 18, 2013, Amsterdam, The Netherlands 20

http://cloc.sourceforge.net/
https://launchpad.net/ubuntu/+source/pmccabe
https://pypi.python.org/pypi/radon
http://www.eu-emi.eu/release
http://www.eu-emi.eu/release
http://www.eu-emi.eu/release

