
COMPUTING IN HIGH ENERGY PHYSICS (CHEP) 2013

Parallel Track Reconstruction in CMS
Using the Cellular Automaton Approach
Daniel Funke, Thomas Hauth, Vincenzo Innocente, Günter Quast,
Peter Sanders and Dennis Schieferdecker | October 15, 2013

KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association

www.kit.edu

http://www.kit.edu

Motivation

Increase in LHC’s luminosity and energy will change events from this

20-30 simultaneous pp collisions ⇒ ≈ 100 tracks per event

Daniel Funke – Parallel Track Reconstruction October 15, 2013 2/19

Motivation

Increase in LHC’s luminosity and energy will change events from this to this

80-100 simultaneous pp collisions ⇒ more than 1000 tracks per event

Daniel Funke – Parallel Track Reconstruction October 15, 2013 2/19

Motivation

Challenges:

Increased combinatoric complexity

Stagnating CPU clock speed
⇒ New technologies: multi-core, vector units, GPGPUs

Heterogeneous CMS computing environment ⇒ transparent solution

Approach:

Parallelism on intra- and inter-event level

Simple geometric calculations and data structures

OpenCL: open framework for CPU and GPU computing
⇒ one code, all platforms – ideal for CMS environment

Cellular automaton: reconstruct tracks by joining compatible hit triplets
⇒ efficient and effective criteria for valid triplet combinations
⇒ fast triplet finding algorithm

Daniel Funke – Parallel Track Reconstruction October 15, 2013 3/19

Motivation

Challenges:

Increased combinatoric complexity

Stagnating CPU clock speed
⇒ New technologies: multi-core, vector units, GPGPUs

Heterogeneous CMS computing environment ⇒ transparent solution

Approach:

Parallelism on intra- and inter-event level

Simple geometric calculations and data structures

OpenCL: open framework for CPU and GPU computing
⇒ one code, all platforms – ideal for CMS environment

Cellular automaton: reconstruct tracks by joining compatible hit triplets
⇒ efficient and effective criteria for valid triplet combinations
⇒ fast triplet finding algorithm

Daniel Funke – Parallel Track Reconstruction October 15, 2013 3/19

Problem Space

Reduce three dimensional problem to two dimensions

x = r · sinφ and y = r · cosφ

Barrel

y

x
φ

r

Endcap

z

r

Detector layer prescribes rlayer.

(φ, z) describe hit.

Detector layer prescribes zlayer.

(φ, r) describe hit.

Daniel Funke – Parallel Track Reconstruction October 15, 2013 4/19

Problem Space

Reduce three dimensional problem to two dimensions

x = r · sinφ and y = r · cosφ

Barrel

y

x
φ

r Following work considers barrel layers

Detector layer prescribes rlayer.

(φ, z) describe hit.

Daniel Funke – Parallel Track Reconstruction October 15, 2013 4/19

Algorithm Overview

Pair Building

Third Hit Prediction

Triplet Filtering

Triplet Joining

Control Flow

Grid Building

D
ev

ic
e

H
o

st

Grid data structure: queries for hits within predicted
search range

Simple and local computations for predicting search
range for hit pairs and triplets

Address peculiarities of OpenCL

No dynamic memory allocation
Penalty for diverging threads

Fine-grained workload distribution

Physical studies for triplet joining
⇒ not yet implemented in OpenCL

Daniel Funke – Parallel Track Reconstruction October 15, 2013 5/19

Two-Pass Scheme

Problem:

OpenCL: no dynamic memory allocation within kernel

Potentially huge number of outputs

Approach: Two-pass scheme

Count 2 1 3 10 -

Prefix sum 0 2 3 66 7

Memory

Store

1 Count number of valid items

Host: Allocate memory

2 Store valid items appropriately

If validity is expensive to determine
⇒

”
oracle“-bitstring: reuse validity check result in store function

All presented algorithms follow this two-pass scheme

Daniel Funke – Parallel Track Reconstruction October 15, 2013 6/19

Two-Pass Scheme

Problem:

OpenCL: no dynamic memory allocation within kernel

Potentially huge number of outputs

Approach: Two-pass scheme

Count 2 1 3 10 -

Prefix sum 0 2 3 66 7

Memory

Store

1 Count number of valid items

Host: Allocate memory

2 Store valid items appropriately

If validity is expensive to determine
⇒

”
oracle“-bitstring: reuse validity check result in store function

All presented algorithms follow this two-pass scheme

Daniel Funke – Parallel Track Reconstruction October 15, 2013 6/19

Grid Data Structure

CMSSW: hits stored in k-d tree

Uniform grid: more suitable for GPU construction and retrieval

0-10-20-30 302010
z

−π
2

π
2

π

−π

φ 0

Ex situ construction with two pass algorithm

One detector layer per work-group

Simultaneous grid building for all layers

Concurrent processing of multiple events

Local memory use if grid granularity permits

Daniel Funke – Parallel Track Reconstruction October 15, 2013 7/19

Pair Building

For hit in second layer: find compatible hit in first layer

Predict z-range based on maximum distance of track to origin

Calculate φ-range based on minimum transverse momentum pT

z-prediction

1

2

z

r

0
z0 z0

φ-prediction

α
β

x

y

r2r1

rmin

rmin
rmin

~c

rmin ∝ min pT ⇒ ∆φ ≥ |α− β|

Daniel Funke – Parallel Track Reconstruction October 15, 2013 8/19

Triplet Prediction

For hit pair: find compatible hits in third layer

z-range prediction based on straight line extrapolation
+ parameter to account for bending and multiple scattering

Prediction of φ-range similar to pair building
⇒ move origin of coordinate system to hit in first layer

z-prediction

1

2

3

z

r

0

d0

z ′

φ-prediction

α
β

x

y

r2r1

rmin

rmin
rmin

~c

Daniel Funke – Parallel Track Reconstruction October 15, 2013 9/19

Triplet Filtering

Discard fake triplets: not belonging to a particle’s trajectory

Computationally inexpensive criteria to identify valid triplets

Cutoff values derived from simulated events for each layer configuration

Transverse bending

|φ′ − φ| ≤ dφ

y

x

φ
φ′

Longitudinal bending∣∣∣∣θ′θ − 1

∣∣∣∣ ≤ dθ

θ

θ′

r

z

Transverse impact
parameter

Rieman fit method

y

xd0

Daniel Funke – Parallel Track Reconstruction October 15, 2013 10/19

Triplet Joining

Two hit triplets can be joined if

both have two hits in common

their difference in momentum is bounded by∣∣∣∣qp − q′

p′

∣∣∣∣ ≤ dp

the difference between the normal vectors to their trajectory is bounded by

|n− n′| ≤ dx

Daniel Funke – Parallel Track Reconstruction October 15, 2013 11/19

Evaluation

Physics performance measures:
(obtained by matching algorithm output to simulated truth)

Efficiency = nvalid
nsimulated

Fake Rate = nfakes
nfound triplets

Clone Rate = nclones
nfound triplets

Background = nfakes

Runtime performance measures:

Kernel time: similar to CPU time

Wall time: includes overhead due to OpenCL, data transfers, . . .

Speedup measured as ratio := baseline algorithm
new algorithm

Daniel Funke – Parallel Track Reconstruction October 15, 2013 12/19

Physics Performance – Setup

Realistic events:

QCD
”
bread-and-butter“ events and tt̄ events with complex topology

2000 events,
√
s = 14 TeV, pT ≥ 1 GeV c−1, barrel only

Average of 120 tracks per event

Artificial events:

Algorithmic performance evaluated with [1. . . 4096] muon tracks

Origin at (0,0), pT ∈ [1, 10] GeV c−1, η ∈ [−1, 1]

Triplet finding in pixel barrel layers evaluated

Daniel Funke – Parallel Track Reconstruction October 15, 2013 13/19

Algorithmic Performance - Setup

CPU:

Core i7-3930K (6 cores, 3.20GHz)

500 EUR, 154 GFLOPS,
1.2 GFLOPS W−1

SLC 6.4, Intel OpenCL SDK 2012,
OpenCL 1.1, GCC 4.7.2

GPU:

GeForce GTX 660

250 EUR, 1881.6 GFLOPS,
13.4 GFLOPS W−1

Ubuntu 12.04, NVIDIA driver
319.23, OpenCL 1.1, GCC 4.7.2

CMSSW:

CMSSW 6.0.0, SLC 6.4, GCC 4.6.2

Single threaded application ⇒ only one CPU core used

Initial seeding step in pixel barrel evaluated
⇒ sophisticated calculations: multiple scattering, bending corrections

Daniel Funke – Parallel Track Reconstruction October 15, 2013 14/19

Physics Performance – Triplet Finding

1-2-3 2-3-4 3-4-5 4-5-8
layer triplet

0.0

0.2

0.4

0.6

0.8

1.0

fra
ct
io
n
[1
]

tt̄ Simulated Event Studies efficiency
fake rate
clone rate

≈ 80 % efficiency throughout detector ∼ order of CMSSW initial seeding
⇒ good result considering simplicity of approach

High fake rate for layer 4+ ⇒ less precise silicon strip dets. ⇒ looser cuts
⇒ multiple triplet finding passes with increasingly looser cuts

Daniel Funke – Parallel Track Reconstruction October 15, 2013 15/19

Physics Performance – Triplet Joining
Combination of triplets from seeding in layers 1-2-3 and 2-3-4:

Cut Flow
0.0

0.2

0.4

0.6

0.8

1.0

fr
ac

ti
on

[1
]

no cut same hit qoverp cut kink cutno cut same hit qoverp cut kink cut

efficiency
fake rate

101

102

103

104

105

ba
ck

gr
ou

nd
co

un
t

[1
]

no cut same hit qoverp cut kink cut

background

Same hit cut eliminates most fake combinations
⇒ computationally inexpensive

≈ 95 % efficiency for this step, 60 % fake rate ⇒ reduce fake triplets

Daniel Funke – Parallel Track Reconstruction October 15, 2013 16/19

Algorithmic Performance – #Tracks

10−1

100

101

102

103

104

105

tim
e

/
ev

en
t[

m
s]

Processing Time over Tracks
wall time GPU
kernel time GPU

wall time CPU
kernel time CPU

CMSSW 6.0.0

100 101 102 103

tracks / event
2−82−62−42−22022242628

ra
tio

fine grid

For > 500 tracks
event :

OCL on GPU outperforms OCL on CPU up to factor 64
OCL on CPU (6 cores) ≈ same performance as CMSSW (1 core)

Daniel Funke – Parallel Track Reconstruction October 15, 2013 17/19

Algorithmic Performance – Grid
Finer-grained grids:

+ Reduced combinatorics in pair building and triplet prediction
– Data structure too large for fast local memory of GPU
⇒ Performance penalty in grid building and pair generation

10−4

10−3

10−2

10−1

100

101

102

tim
e

[m
s]

Processing Time over Tracks
coarse grid - CPU
coarse grid - GPU

medium grid - CPU
medium grid - GPU

fine grid - CPU
fine grid - GPU

100 101 102 103 104

tracks / event
0.0
0.5
1.0
1.5
2.0
2.5

ra
tio

Daniel Funke – Parallel Track Reconstruction October 15, 2013 18/19

Conclusions

Triplet Finding

Parallel triplet finding algorithm implemented with OpenCL

Validation of physical performance with ≈ 80 % efficiency

Favorable runtime benchmarks for events with > 500 tracks
⇒ Speedup of up to 64 on GPU compared to CPU

Processing of multiple events required to fully exploit GPUs

Triplet Joining

Suitable efficiently computable criteria identified

Overall efficiency of 75 % and reasonable fake rejection

Future Work

Implement triplet joining in OpenCL

Extend geometric calculations to endcaps

Evaluate CMSSW framework integration

Daniel Funke – Parallel Track Reconstruction October 15, 2013 19/19

Conclusions

Triplet Finding

Parallel triplet finding algorithm implemented with OpenCL

Validation of physical performance with ≈ 80 % efficiency

Favorable runtime benchmarks for events with > 500 tracks
⇒ Speedup of up to 64 on GPU compared to CPU

Processing of multiple events required to fully exploit GPUs

Triplet Joining

Suitable efficiently computable criteria identified

Overall efficiency of 75 % and reasonable fake rejection

Future Work

Implement triplet joining in OpenCL

Extend geometric calculations to endcaps

Evaluate CMSSW framework integration

Daniel Funke – Parallel Track Reconstruction October 15, 2013 19/19

Backup

Daniel Funke – Parallel Track Reconstruction October 15, 2013 20/19

Influence of Work-Group Size

20 21 22 23 24 25 26 27 28 29 210

work-group size
20

21

22

23

24

25

26

sp
ee

du
p

Speedup for Varying Work-Group Sizes
GPU - relative
GPU - absolute
GPU over CPU
CPU - relative

GPU very sensitive to work-group size – CPU not (bad auto-vectorization)

GPU outperforms CPU up to factor ≈ 64

Daniel Funke – Parallel Track Reconstruction October 15, 2013 21/19

Runtime over Events
Concurrent processing of events amortizes OpenCL overhead
⇒ essential for GPU usage

100 tracks per event

20 21 22 23 24 25 26 27 28 29 210 211

events
10−2

10−1

100

101

102

103

tim
e

/
ev

en
t[

m
s]

Processing Time for Concurrent Events
GPU wall time
GPU kernel time

CPU wall time
CPU kernel time

Tracks: 100

1000 tracks per event

20 21 22 23 24 25 26

events
10−1

100

101

102

103

tim
e

/
ev

en
t[

m
s]

Processing Time for Concurrent Events

GPU wall time
GPU kernel time

CPU wall time
CPU kernel time

Tracks: 1000

Open question: How to realize multiple concurrent events in framework?
⇒ Heuristic based on expected tracks/event

Daniel Funke – Parallel Track Reconstruction October 15, 2013 22/19

Runtime Composition - GPU

20 21 22 23 24 25 26 27 28 29 210 211

tracks
0.0

0.2

0.4

0.6

0.8

1.0

ru
nt

im
e

sh
ar

e
[%

]
Composition of Event Processing Runtime - GPU

Filter triplets
Predict triplets - store
Predict triplets - count
Generate pairs
Build grid
IO - write
IO - read

medium grid Events: 30

IO requires large portion of runtime on GPU up to ≈ 256 tracks per
event, then triplet prediction takes over

Grid building time amortizes for larger events (≈ 256 tracks)

Daniel Funke – Parallel Track Reconstruction October 15, 2013 23/19

Runtime Composition - CPU

20 21 22 23 24 25 26 27 28 29 210 211

tracks
0.0

0.2

0.4

0.6

0.8

1.0

ru
nt

im
e

sh
ar

e
[%

]

Composition of Event Processing Runtime - CPU

Filter triplets
Predict triplets - store
Predict triplets - count
Generate pairs
Build grid
IO - write
IO - read

medium grid Events: 30

IO transfer negligible on CPU

Grid data structure building dominates runtime for events < ≈ 128 tracks

Daniel Funke – Parallel Track Reconstruction October 15, 2013 24/19

Physics Performance – Muon Sample

100 101 102 103 104

tracks

0.0

0.2

0.4

0.6

0.8

1.0

Physics Performance over Tracks

efficiency
fake rate
clone rate

High efficiency of ≈ 98 %

For > 100 tracks from origin: very high occupancy in detector
⇒ high fake rate expected

Daniel Funke – Parallel Track Reconstruction October 15, 2013 25/19

	Motivation
	Algorithms
	Evaluation

