The H.E.S.S. Data Acquisition System

Controlling The Biggest Cherenkov Telescope Ever Built

A. Balzer, M. Füßling, M. Gajdus,

>Four Cherenkov telescopes

- 60 t weight, 13 m dish diameter
- 15 m focal length, 107 m² mirror area
- 960 PMTs, 5° field of view

- from ~100 GeV
- to several tens of TeV

>Additional fifth Cherenkov telescope

- 560 t weight, 24 m * 33 m dish diameter
- 36.1 m focal length, 590 m² mirror area
- 2048 PMTs, 3.2° field of view

- from ~20 GeV
- to several tens of TeV

>Additional fifth Cherenkov telescope

- 560 t weight, 24 m * 33 m dish diameter
- 36.1 m focal length, 590 m² mirror area
- 2048 PMTs, 3.2° field of view

- from ~20 GeV
- to several tens of TeV

>Additional fifth Cherenkov telescope

- 560 t weight, 24 m * 33 m dish diameter
- 36.1 m focal length, 590 m² mirror area
- 2048 PMTs, 3.2° field of view

- from ~20 GeV
- to several tens of TeV

>Additional fifth Cherenkov telescope

- 560 t weight, 24 m * 33 m dish diameter
- 36.1 m focal length, 590 m² mirror area
- 2048 PMTs, 3.2° field of view

- from ~20 GeV
- to several tens of TeV

Shower Reconstruction

>The shower images in the camera are approximated as ellipses

- > Intensity \rightarrow Energy
- > Orientation \rightarrow Direction
- > Shape \rightarrow Primary Particle

Courtesy A. Schulz

Four telescope event in common camera plane

Operating the H.E.S.S. Array

>Data taking only during astronomical darkness (dark time)

roughly 1000 hours a year

>Array operated by monthly changing non-expert "Shift Crew"

- 1 "Shift Expert"
- 2 "Shifters"
- Supported by technical staff on site and sub-system experts in Europe

>Dark time split up in 28 minute "runs"

- each run can be taken on a different source on the sky
- each run can use a different detector configuration

Data taking highly automized

- Except for:
 - Manual activation of tracking system of telescopes
 - Loading and unloading of CT5 camera
 - Error handling
 - Weather monitoring

Array Control for H.E.S.S. Phase II

Central DAQ Cluster

- 4 * 48 port switches, 10 worker nodes, 6 server
- ~100 cores, ~200 GB Ram, ~150 TB disk space
- ~ 46 MB/s data rate

>H.E.S.S. DAQ

- multi-core, multi-process, multi-machine system
- ~240 processes
- data taking, slow control, error handling, user interaction

H.E.S.S. DAQ Overview

> Every piece of hardware represented by at least one Controller

Responsible for activation, management and deactivation of hardware

>Dedicated management controllers called Manager

Responsible for synchronization and error handling

Several other Controller types with different purposes in use

Receiver, displays, sound & alerts, real time analysis, calibration …

Inter-Process Communication using the <u>OmniORB</u> implementation of the <u>CORBA</u> standard

Supported programming languages:

- C++
- Python
- Lost dark time from 2009 to 2012 due to Central DAQ problems was less than 1%

Data Flow

- >Own Receiver for each hardware Controller
- Every Receiver may have a Displayer
- Data storage classes are experiment specific
- Data is stored using <u>ROOT</u> object serialization mechanism
- Data calibration and reconstruction algorithms can be used online and offline

Displaying SlowControl Information

>One generic display controller configured solely via a MySQL database

- Uses <u>ROOT</u> object introspection capabilities and histograms
- Able to display any data member of any storage class

>Dedicated display machines

X11 forwards from any machine in the data network

Some displays written in Python using PyGTK 2.4

The Central DAQ-GUI

GUI Commands DAQ Controls	Run Sched	uling	Observation Shift Log				Telescop	s			
🚽 🗸 🕨 🖬 🔇	2 🚨 🚽 🧕	2	▶► 11		📰 🕓			10		Ø	
Quit Start Stop Fi	x Panic Edit Schedu	le AutoScheduler	Start RM Stop RM	Edit Log Se	nd Log Gap Ma	anager	Availabl	e (Un)Parl	HV Off	Close Lid	s
SubArrays Bunning DAO Processes											
		Process Name			Er	rror	Safe	Ready	Config.	Running	
SubArray03	SubArrav04	Array					1			1	
Cantrals	Cantrals	♦ Atmosphere								4	
		▷ CT1					14				
Stop Safe Retry Unlock Stop Safe Retr	Stop Safe Ketry Unlock	♦ CT2					14				
Status RunNumber: None RunNumber:	Status	▷ CT3					14				
	RunNumber: None	♦ CT4					14				
Run Type: None	Run Iype: None	♦ CT5					21				
Telescopes: None	Telescopes: None	CentralTrigger								1	
Nodes: None	Nodes: None	▼ Node01					3				
		- Analyser					Х				
Sate	Sate	Manager					Х				
▶ 28:00	≥ 28:00	Receiver		Logfile	eu		X				Ξ
	JJ	▶ Node02		Logine			3				
		▶ Node03		Safe			3				
SubArray01		P Node04		Ready			3				
	SubArray02	P Node05		Configured			3				
Controls		P Node06		Running			3				
Stop Safe Retry Unlock	Stop Safe Retry Unlock	P Node07		Delete			3				
		P Node08		Kill			3				
Status BunNumber: None	Status BunNumber: None	Node09					2				
RunType: None	RunType: None	Nodel1					3				
RunCount: None	RunCount: None	Nodel12					3				
Telescopes: None	Telescopes: None	D Node13					3				
Nodes: None	Nodes: None	D Node14					3				
 Safa 	Safe	▶ Node15					3				
▼ Sale		Services								6	
▶ 28:00	≥ 28:00	▷ SlowControl								27	
		▶ SubArrav01					23				
L								1			

Multiple Simultaneous Observations

Sole IACT array with this ability

State Machine

- > Every controller implements a common state machine
- >There is only one transition for a given state and direction
- >Default states
 - Day time: Safe
 - Night time: Ready
 - Data taking: Running

- Controller only receive a target state
- Target state does not need to be an adjacent state
- Controller will wait for its dependencies to finish their current state transition before proceeding with their own
- > "Immediate" transitions will ignore dependencies

Reaction To ToO Alerts

> Motivation

- GRBs are the primary science goal for H.E.S.S. II
- Mean duration of "long"
 GRBs is 30 seconds

>Design Goals

- As quick as possible
- Fully automatic
- Ready for alerts in every possible state

http://imagine.gsfc.nasa.gov/docs/features/news/10sep08.html

Implementation of the ToO Alert System

> Slewing time of the telescopes can't be reduced

- CT5 immediately moves to new target if ToO alert is received \checkmark
- DAQ notified once target within field of view
- CT1-4 are optional
- Fine positioning after data taking has started \checkmark
- Use of reverse pointing
- >Use time to stop ongoing runs and start joined ToO alert run
 - Use only available telescopes
 - Clean DAQ state after ToO alert

Keep transition times of other processes minimal

- Camera is just paused
- Camera HV is not turned off
- Camera Trigger remains configured

Performance of the ToO Alert Scheme

>H.E.S.S. Array able to react to ToO Alerts in 58 seconds

- CT5 Tracking: 32 seconds
 - Angular distance was 59°
- CT5 Camera: 31 seconds
- Central Trigger: 5 seconds
- Central DAQ overhead: 1 second

>Mean transition time for normal runs: ~3 minutes

>MAGIC: ~30 seconds (GRB 050713a)¹

¹ <u>http://iopscience.iop.org/1538-4357/641/1/L9</u>

Summary & Outlook

- The H.E.S.S. DAQ is the most complex array control system of current IACT experiments
- Lost dark time from 2009 to 2012 due to Central DAQ problems was less than 1%
- Reaction time to ToO Alerts is smaller than 60 seconds
- >Further improvements are planned
- >H.E.S.S. Central DAQ Paper is going to be published soon

Thank you for your attention

