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P̄ANDA@FAIR Experiment

A fixed target experiment with antiproton beam
(momentum range: 1.5 to 15 GeV/c)

Physics program

• Hadron Spectroscopy
• Hadrons in Matter

• Nucleon Structure
• Hypernuclei

PandaRoot

Luminosity Determination

pp̄ elastic scattering

• coulomb part:
can be calculated from QED

• hadronic part:
measurement+models

measurement at small momentum transfer
→ small scattering angle θ (3-8 mrad)

Luminosity Extraction
Reconstructed data with model fit

Model:
 [mrad]Θ
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 = 1.5 GeV/cbeamP

N = L · (σ · ε)⊗ θRES
N – number of events, σ – cross section
ε – efficiency, θRES – resolution, L – luminosity

The Luminosity Detector (LMD)

• measurement at small θ
• position ∼ 11 m downstream from IP
• 4 detector planes with 10 modules

each

• placed inside vacuum to minimize
multiple scattering of p̄

• 10 silicon pixel sensors
per module

• HV-MAPS
2×2 cm2, 50 µm thick
with 80×80 µ m2 pixels

• CVD-diamond
(200 µm) as supporting
structure

LMD Track Reconstruction Chain

Back propagation

to IP

Track
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Track
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Track Search
• robustness against hit losses
• flexibility to hits scattering

⇒ two competitive
algorithms

Track Fit
straight line fit not suitable
⇒ "broken-lines" approach

Back Propagation
• distance between IP and

LMD contains complicated
magnetic field structure

• small θ angles

⇒ two competitive
algorithms

Track Reconstruction

Track Search Algorithms

Track Following (TF)

• combinations between 1st and 2nd planes
• additional hit on 3rd plane inside corridor
• additional hit on the last plane inside enlarged corridor
• missing plane algorithm extension: only 3 hits are necessarily

Cellular Automaton (CA)

0 1 2

• build all combinations between hits on pairs of planes (cells)
• search for neighboring cells by check of breaking angles
• arrange cells during evolution by number of neighbors
• missing plane algorithm extension: cells are also built by skipping layers in between

Results from simulation tests (Pbeam = 1.5 GeV/c)
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Track Following

Cellular Automaton
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• similar amount of missed & ghost

tracks for low track multiplicity
• CA gives smaller number of

missed tracks at high
multiplicities

• TF is faster, especially for events
with high track multiplicity

Track Fit
The least squares method with "broken lines" track model (Minuit)
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ξx, ξy - hit coordinates with uncertainties σx, σy
xl, yl - coordinates of track on plane l

αxJ , αyJ - scattering angles on plane J
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Results from simulation tests (Pbeam = 1.5 GeV/c)
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 / ndf =   3871 / 25822χ
Constant   1.79± 360.2 
MeanX     1.268± -1.032 
SigmaX    0.9739± 379.8 
MeanY     1.262± 1.904 
SigmaY    0.9637± 378.1 
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Breaking angles αx and αy

Resolutions and pulls of starting track point (Xstart, Ystart) and
momentum vector at this point (Px, Py, Pz) after Track Fit

Parameter Resolution Pull Mean Pull Sigma

Xstart 14.03± 0.02, µm −1.3 · 10−3 0.96
Ystart 14.04± 0.02, µm 2.3 · 10−3 0.97
Px 444± 2, keV 6.5 · 10−3 1.1
Py 443± 2, keV 3.9 · 10−3 1.1
Pz 18± 0.1, keV −3.4 · 10−3 1.1

Back Propagation to Interaction Point
Recalculation of track parameters through the dipole
and solenoid magnetic field
θ resolution after back propagation
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Time consumption
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Hit reconstruction
Track Search: Track-Following

Track Search: Cellular Automaton

Track Fit
Back-propagation: GEANE

Back-propagation: GenFit

Total

slowest process→ Back Propagation
fastest process → Track Following

Relative Alignment of Modules

• Fast track-based software alignment procedure
• Based on a non-iterative least squares fitting method
• Utilizes a C++ implementation of the "matrix-crushing" algorithm Millepede

Translation misalignment influence on θ resolution
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Misalignment of:
• 50 µm already disturbs

reconstruction
• up to 250 µm can be corrected

Expected mechanical accuracy (∆trans ∼ 200 µm, ∆rot ∼ 3mrad )
θ resolution before alignment
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θ resolution after alignment
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θ resolution after alignment is the same as for modules with ideal alignment


