Offline Software for the PANDA Luminosity Detector

PANDA@FAIR Experiment

A fixed target experiment with antiproton beam (momentum range: 1.5 to 15 GeV/c)

Physics program

 Hadron Spectroscopy • Hadrons in Matter

 Nucleon Structure • Hypernuclei

Luminosity Determination

$p\bar{p}$ elastic scattering

- coulomb part: can be calculated from QED
- hadronic part:
- measurement+models
- measurement at small momentum transfer

The Luminosity Detector (LMD)

- measurement at small θ
- \bullet position \sim 11 m downstream from IP • 4 detector planes with 10 modules

• placed inside vacuum to minimize multiple scattering of $ar{p}$

- 10 silicon pixel sensors per module
- HV-MAPS
 - 2×2 cm², 50 μ m thick with 80 \times 80 μ m² pixels
- CVD-diamond
- (200 μ m) as supporting structure

Track Fit

- combinations between 1st and 2nd planes
- additional hit on 3rd plane inside corridor
- additional hit on the last plane inside enlarged corridor
- *missing plane* algorithm extension: only 3 hits are necessarily

Cellular Automaton (CA)

- build all combinations between hits on pairs of planes (cells)
- search for neighboring cells by check of breaking angles
- arrange cells during evolution by number of neighbors
- *missing plane* algorithm extension: cells are also built by skipping layers in between

Results from simulation tests ($P_{beam} = 1.5 \ GeV/c$)

- similar amount of missed & ghost tracks for low track multiplicity • CA gives smaller number of
- missed tracks at high
- multiplicities
- TF is faster, especially for events with high track multiplicity

 x_l , y_l - coordinates of track on plane l α_J^x , α_J^y - scattering angles on plane J

Results from simulation tests ($P_{beam} = 1.5 \ GeV/c$)

Resolutions and pulls of starting track point (X_{start}, Y_{start}) and momentum vector at this point (P_x, P_y, P_z) after Track Fit

Parameter	Resolution	Pull Mean	Pull Sigma
X_{start}	$ 14.03 \pm 0.02$, μm	$-1.3 \cdot 10^{-3}$	0.96
Y_{start}	14.04 ± 0.02 , μm	$2.3 \cdot 10^{-3}$	0.97
P_x	444 ± 2 , keV	$6.5 \cdot 10^{-3}$	1.1
P_y	443 ± 2 , keV	$3.9 \cdot 10^{-3}$	1.1
P_z	18 ± 0.1 , keV	$-3.4 \cdot 10^{-3}$	1.1

Breaking angles α^x and α^y

Back Propagation to Interaction Point

Recalculation of track parameters through the dipole and solenoid magnetic field θ resolution after back propagation

Time consumption

slowest process \rightarrow Back Propagation fastest process \rightarrow Track Following

2 4 6 8 10 12 14 16 18 20

Relative Alignment of Modules

- Fast track-based software alignment procedure
- Based on a non-iterative least squares fitting method
- Utilizes a C++ implementation of the "matrix-crushing" algorithm Millepede

Translation misalignment influence on θ resolution

Misalignment of: • 50 μ m already disturbs reconstruction • up to 250 μ m can be corrected Expected mechanical accuracy ($\Delta_{trans} \sim$ 200 μ m, $\Delta_{rot} \sim$ 3mrad)

 θ resolution before alignment Δ_x before and after θ resolution after alignment

 θ resolution after alignment is the same as for modules with ideal alignment