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PANDAGQFAIR Experiment

A fixed target experiment with antfiproton beam
(momentum range: 1.5 1o 15 GeV/c)

Physics program

e Hadron Spectroscopy e Nucleon Structure
e Hadrons in Matter e Hypernuclei

Luminosity Determination

pp elastic scattering
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e coulomb part:

e hadronic part:
measurement+models
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Luminosity Extraction

can be calculated from QED
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measurement at small momentum transfer
— small scattering angle 6 (3-8 mrad)

Reconstructed data with model fit
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The Luminosity Detector (LMD)

e Measurement at small 6
e position ~ 11 m downsfream from IP

¢ 4 detector planes with 10 modules
each

¢ 10 silicon pixel sensors
per module
o HV-MAPS
2x2 cm?, 50 um thick
with 80x80 1 m? pixels
e CVD-diamond
(200 um) as supporting
stfructure

e placed inside vacuum to minimize
multiple scattering of p
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Track Search Algorithms Track Fit
Track Following (TF) The least squares method with "bbroken lines" frack model (Minuit)
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e combinations between 1st and 2nd planes Results from simulation tests (Pyegrn = 1.5 GeV/C)
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e build all combinations between hits on pairs of planes (cells) Back Propagahon to Interaction Point Time consumption
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Relative Alignment of Modules
e [Fast frack-based soffware alignment procedure
e Based on a non-iterative least squares fitting method Expected mechanical accuracy (Ayns ~ 200 pm, A, ~ 3mrad )
o Utilizes a C++ implementation of the "maftrix-crushing" algorithm Millepede 0 resolufion before alignment A, before and affer 0 resolution affer alignment
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