
Many-core applications to online track
reconstruction in HEP experiments

S.Amerio, D.Bastieri, A.Gianelle, D.Lucchesi (INFN and University of Padova)
M. Corvo (University of Ferrara)

T.Liu, R.Rivera (Fermilab)
W.Ketchum (Los Alamos National Laboratory)

S.Poprocki, P.Wittich (Cornell University)
 A.Lonardo, L.Tosoratto, P.Vicini (INFN Roma)

CHEP 2013 – 14-18 October 2013

2

Real time selections in HEP physics

From collisions - O(10 MHz) - to data saved on tape – O(1 kHz): 104 reduction factor!

A real time selection system (trigger) plays a key role in HEP experiments at hadron
colliders, reducing rate and selecting the most signal-like events.

A trigger system should be...
- fast, not only in data processing but also in data transfer
- scalable, to adapt to changing data taking conditions
- easy to maintain
- not too expensive, if possible :-)

3

Parallel architectures
and real time selections

Interest in parallel architectures is increasing in scientific computing.

Graphic Processing Units (GPUs) and multi-core CPUs provide
● A lot of computing power for highly parallelizable tasks;
● High level programming languages (C/C++, CUDA, OpenCL);
● Continuous improvement of performance driven by the market.

Real time selections are usually based on algorithms well suited for parallelization, e.g.
the reconstruction of trajectories left by charged particles (online tracking).

 pb-pb interaction

From hits in the detector.... to tracks

4

● Performance study of parallel architectures in real time selections.
● Use case: online track reconstruction at CDF experiment at Tevatron

● SVT (Silicon Vertex Trigger) track fitting algorithm ported to parallel architectures

● Measurements of
● Data processing latency, comparing different parallel architectures (GPU, MIC,

CPU)
● Data transfer latency, comparing different data transfer protocols (GPU Direct

V1.0, Cuda Aware MPI, P2P)

Goal: identify strength and weakness of the different technologies.
Investigate different data taking environments: from thousands to millions of track fits.

Previous studies presented at NSS2012
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6551422

In this talk...

5

SVT algorithm in a nutshell
SVT – based on custom hardware – reconstructed tracks in time for a Level-2 trigger
decision (~ 20 s) in two steps:

1) Pattern recognition to form hit combinations (roads)

2) Track fitting inside roads using simple scalar product

We implemented this part of the
code on parallel architectures

6

SVT track fitting algorithm step by step

Unpack input data (24-bit words) and
fill all the necessary arrays.

7

SVT track fitting algorithm step by step

For each event and for each road,
calculate all the possible combinations
(each layer can have more than one
hit)

Road1 Road 2 Road 3

Unpack input data (24-bit words) and
fill all the necessary arrays.

8

SVT track fitting algorithm step by step

For each event and for each road,
calculate all the possible combinations
(each layer can have more than one
hit)

Road1 Road 2 Road 3

Unpack input data (24-bit words) and
fill all the necessary arrays.

For each combination:
- retrieve fit constants from device
memory
- perform scalar product and chi2 cut
- format good tracks for output

Road1 Road 2 Road 3

9

Code implementation

● Our approach to the implementation as been as much conservative as possible
● Starting point: SVT simulation code, written in C language.
● Strategy: do not re-think the track fitting algorithm, but parallelize whenever possible

● GPU
● Write a different kernel for each function (CUDA)
● parallelize over events, roads, combination --> each thread processes 1

candidate track
● MIC

● pragma OpenMP parallel for statements (embarassingly parallel approach)
● parallelize over events --> each core processes 1 event

Not only performance measurements, but also assess feasibility for porting current
serial code to parallel architectures.

10

Hardware specifications

Tesla M2050 Tesla K20m GeForce GTX
TITAN

MIC 5110P

Performance
(SP, GFlops)

1030 3520

4500 2022

Memory
Bandwidth (GB/s)

148 208 288 320

Memory Size (Gb) 3 5 6 8
Number of cores 448 2496 2688 60
Clock speed (GHz) 1.15 0.706 0.837 1.053

Intel Core i7-3770 Intel Xeon E5630

Memory
Bandwidth (GB/s)

25 25

Number of cores 8 4

Clock speed (GHz) 3.40 2.53

11

Data processing latency measurements

Measurements
Each data sample is processed 100 times
The final latency value is the mean over the
100 measurements.

T = T
fin

 - T
in

Time measured with
standard C libraries
(gettimeofday() function)

T
in

T
fin

Input data
Events have fixed number of roads (64) and
combinations (32) → 2048 candidate tracks
to be fitted in each event.

Each event is 3 kB.

Events are grouped in data samples with
different event multiplicity, from 1 to 3000
→ from 2048 to 6.1 millions of fits in each
data sample

12

Results on data processing

Better performance of GPUs thanks to the parallelization of the 3 nested loops.
(Events, Roads, Combinations)

GPU

MIC

CPU

13

Results on data processing

Same behavior in the low #fits
region, except for events with
small number of fits, where
standard CPU performs better.

GPU

MIC
CPU

GPU

MIC

CPU

14

Speedup

Speedup over a standard CPU (E5630).
Maximum gain obtained with > 1000 events (or > 2 M fits) processed in parallel
To fully exploit parallel devices, we need to perform a lot of calculations.

GPU

MIC
CPU

15

Breakdown of computing time
Where is most of the time spent on each device?

Standard CPU: most of the time spent in
the fitting part; code completely serial →
percentage of time flat as # evts increases

GPU: the fitting stage dominates for high
multiplicity of tracks.

MIC:combinations and fitting part take the
same time for high number of events.

Track fitting
Calculate all hits combinations
Unpack input data and fill arrays

Offload (MIC only)

events

events

%
 o

f
ti m

e
ov

er
 t

ot
a l

 la
te

n c
y

%
 o

f
ti m

e
ov

er
 t

ot
a l

 la
te

n c
y

%
 o

f
ti m

e
ov

er
 t

o
ta

l l
a t

en
cy

events

16

Data transfer: experimental setup

To mimic the data transfer between Detector and Trigger system we used two
PCs connected by Infiniband links.

Transmitter = Detector
Receiver = Trigger

Measurements
T = time_stop – time_start
10k loops
Time measured in the Transmitter via standard C libraries (gettimeofday() function).

17

Data transfer: experimental setup

We consider different data transfer strategies to the GPU

Data are transferred using Direct Access
Memory to the system memory (GPUDirect).
Two different version tested:
● GPUDirect v1.0, where GPU buffers need

to be staged through the system memory;
● Cuda-Aware MPI, where GPU buffers can

be directly passed to MPI functions.

Data are transferred directly to the GPU,
avoiding any copy to the system memory
(PeerToPeer).

Infiniband
Mellanox card
(Connect-X2)

Apenet+ card (StratixIV-based PCIe
board supporting P2P communication
with Tesla and Kepler GPUs)

18

Data transfer: results (I)

GPU Direct v1

P2P

Total latency (data transfer + copy of data to GPU + data processing on GPU) vs
data transferred

CUDA-aware MPI

Each event has 3 kB in input and 57 kB in output → ~ 60 kB per event
Each point is the mean over 10k TX → RX → TX loops.

In this range of data
transfer sizes CUDA-
aware MPI gives the
best performance.

NB: P2P significantly
better for small data
sizes.

2k fits 6M fits

19

Data transfer: results (II)
How much of the total latency is due to data transfer?

Latency with and without SVT algorithm, for CUDA-Aware MPI

Data transfer only

Data transfer + track
fitting algorithm on
the GPU

Latency due to data transfer to/from GPU is about 20-25% of total.

2k fits 6M fits

20

Conclusions
There are different parallel architectures on the market; which performance can we
obtain on parallel devices for a typical (parallel) real time selection algorithm? What
can we get with current technology without re-thinking our codes from scratch?

Lessons learned

Porting
● With a native parallel code porting to CUDA not so easy but doable without help

of experts. Easier to MIC using the embarassingly parallel approach

Data processing and transfer
● The maximum gain wrt CPU is obtained with millions of tracks fitted in parallel.
● Data transfer is a significant part of total latency

Data structures
● Limited memory on devices
● We worked with simple data structures: fixed size arrays (easier to handle on

GPUs) and no empty events (no unoccupied threads) → careful organization of
input data in a real application, where events have different sizes!

21

Next steps

This work is a starting point for future developments of accelerator-based trigger
algorithms.

Very next steps
● Implementation in OpenCL, comparison vs CUDA on Nvidia and AMD GPUs;
● Performance on Nvidia GPU paired to ARM processor
● Results will be shown at next NSS

Possible future applications:
● LHCb and CMS high level trigger
● MicroBoone (calibrations and hit finding, 3D track fitting)

22

BACKUP

23

Hardware specifications

24

Latency distributions

To study the stability over time we increased
the number of loops from 100 to 10k.

The distribution of all latencies is very narrow
on the CPU, while it shows multiple peaks
and long tails on GPU/MIC.

Probably due to CPU-GPU/MIC
communication.

CHECK!!!

25

Data copy mechanisms

26

Data transfer latency for small data sizes

Input data (Bytes)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

