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Real time selections in HEP physics

From collisions - O(10 MHz) - to data saved on tape – O(1 kHz): 104 reduction factor!

A real time selection system (trigger) plays a key role in HEP experiments at hadron 
colliders, reducing rate and selecting the most signal-like events.

A trigger system should be... 
- fast, not only in data processing but also in data transfer
- scalable, to adapt to changing data taking conditions
- easy to maintain
- not too expensive, if possible :-)
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Parallel architectures 
and real time selections

Interest in parallel architectures is increasing in scientific computing. 

Graphic Processing Units (GPUs) and multi-core CPUs provide
● A lot of computing power for highly parallelizable tasks;
● High level programming languages (C/C++, CUDA, OpenCL); 
● Continuous improvement of performance driven by the market.

Real time selections are usually based on algorithms well suited for parallelization, e.g. 
the reconstruction of trajectories left by charged particles (online tracking).

 pb-pb interaction 

From hits in the detector.... to tracks
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● Performance study of parallel architectures in real time selections.
● Use case: online track reconstruction at CDF experiment at Tevatron

● SVT (Silicon Vertex Trigger) track fitting algorithm ported to parallel architectures

● Measurements of 
● Data processing latency, comparing different parallel architectures (GPU, MIC, 

CPU)
● Data transfer latency, comparing different data transfer protocols (GPU Direct 

V1.0, Cuda Aware MPI, P2P)

Goal: identify strength and weakness of the different technologies.
Investigate different data taking environments: from thousands to millions of track fits. 

Previous studies presented at NSS2012
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6551422

In this talk...
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SVT algorithm in a nutshell
SVT – based on custom hardware – reconstructed tracks in time for a Level-2 trigger 
decision (~ 20 s) in two steps: 

1) Pattern recognition to form hit combinations (roads)

2) Track fitting inside roads using simple scalar product

We implemented this part of the 
code on parallel architectures
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SVT track fitting algorithm step by step

Unpack input data (24-bit words) and 
fill all the necessary arrays.
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SVT track fitting algorithm step by step

For each event and for each road, 
calculate all the possible combinations 
(each layer can have more than one 
hit)

Road1 Road 2 Road 3

Unpack input data (24-bit words) and 
fill all the necessary arrays.
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SVT track fitting algorithm step by step

For each event and for each road, 
calculate all the possible combinations 
(each layer can have more than one 
hit)

Road1 Road 2 Road 3

Unpack input data (24-bit words) and 
fill all the necessary arrays.

For each combination:
- retrieve fit constants from device 
memory
- perform scalar product and chi2 cut
- format good tracks for output

Road1 Road 2 Road 3
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Code implementation

● Our approach to the implementation as been as much conservative as possible 
● Starting point: SVT simulation code, written in C language.
● Strategy: do not re-think the track fitting algorithm, but parallelize whenever possible

● GPU 
● Write a different kernel for each function (CUDA)
● parallelize over events, roads, combination --> each thread processes 1 

candidate track  
● MIC

● pragma OpenMP parallel for statements (embarassingly parallel approach)
● parallelize over events --> each core processes 1 event

Not only performance measurements, but also assess feasibility for porting current  
serial code to parallel architectures. 
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Hardware specifications

Tesla M2050 Tesla K20m GeForce GTX 
TITAN

MIC 5110P

Performance
(SP, GFlops)

1030 3520
 

4500 2022

Memory 
Bandwidth (GB/s)

148 208 288 320

Memory Size (Gb) 3 5 6 8
Number of cores 448 2496 2688 60
Clock speed (GHz) 1.15 0.706 0.837 1.053

Intel Core  i7-3770 Intel Xeon E5630

Memory 
Bandwidth (GB/s)

25 25

Number of cores 8 4

Clock speed (GHz) 3.40 2.53
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Data processing latency measurements

Measurements
Each data sample is processed 100 times
The final latency value is the mean over the 
100 measurements. 

T = T
fin

 - T
in

Time measured with 
standard C libraries 
(gettimeofday() function)

T
in

T
fin

Input data
Events have fixed number of roads (64) and 
combinations (32) → 2048 candidate tracks 
to be fitted in each event.

Each event is 3 kB. 

Events are grouped in data samples with 
different event multiplicity,  from 1 to 3000  
→ from 2048 to 6.1 millions of fits in each 
data sample
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Results on data processing

Better performance of GPUs thanks to the parallelization of the 3 nested loops.
(Events, Roads, Combinations)

GPU

MIC

CPU
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Results on data processing

Same behavior in the low #fits 
region, except for events with 
small number of fits, where 
standard CPU performs better.

GPU

MIC
CPU

GPU

MIC

CPU
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Speedup 

Speedup over a standard CPU (E5630).
Maximum gain obtained with > 1000 events (or > 2 M fits) processed in parallel
To fully exploit parallel devices, we need to perform a lot of calculations.

GPU

MIC
CPU
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Breakdown of computing time
Where is most of the time spent on each device?

Standard CPU: most of the time spent in 
the fitting part; code completely serial → 
percentage of time flat as # evts increases

GPU: the fitting stage dominates for high 
multiplicity of tracks.

MIC:combinations and fitting part take the 
same time for high number of events. 

Track fitting
Calculate all hits combinations 
Unpack input data and fill arrays

Offload (MIC only)
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Data transfer: experimental setup

To mimic the data transfer between Detector and Trigger system we used two 
PCs connected by Infiniband links.

Transmitter = Detector
Receiver = Trigger 

Measurements
T = time_stop – time_start
10k loops 
Time measured in the Transmitter via standard C libraries (gettimeofday() function).
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Data transfer: experimental setup

We consider different data transfer strategies to the GPU

Data are transferred using Direct Access 
Memory to the system memory (GPUDirect).
Two different version tested:
● GPUDirect v1.0, where GPU buffers need 

to be staged through the system memory;
● Cuda-Aware MPI, where GPU buffers can 

be directly passed to MPI functions.

Data are transferred directly to the GPU, 
avoiding any copy to the system memory 
(PeerToPeer).

Infiniband 
Mellanox card 
(Connect-X2)

Apenet+ card (StratixIV-based PCIe 
board supporting P2P communication 
with Tesla and Kepler GPUs)
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Data transfer: results (I)

GPU Direct v1

P2P

Total latency (data transfer + copy of data to GPU + data processing on GPU) vs 
data transferred

CUDA-aware MPI

Each event has 3 kB in input and 57 kB in output → ~ 60 kB per event
Each point is the mean over 10k TX → RX → TX loops.

In this range of data 
transfer sizes CUDA-
aware MPI gives  the 
best performance.

NB: P2P significantly 
better for small data 
sizes.

2k fits 6M fits
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Data transfer: results (II)
How much of the total latency is due to data transfer?

Latency with and without SVT algorithm, for CUDA-Aware MPI 

Data transfer only

Data transfer + track 
fitting algorithm on 
the GPU 

Latency due to data transfer to/from GPU is about 20-25% of total.

2k fits 6M fits
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Conclusions
There are different parallel architectures on the market; which performance can we 
obtain on parallel devices for a typical (parallel) real time selection algorithm? What 
can we get with current technology without re-thinking our codes from scratch?

Lessons learned

Porting 
● With a native parallel code porting to CUDA not so easy but doable without help 

of experts. Easier to MIC using the embarassingly parallel approach 

Data processing and transfer
● The maximum gain wrt CPU is obtained with millions of tracks fitted in parallel.
● Data transfer is a significant part of total latency

Data structures
● Limited memory on devices
● We worked with simple data structures: fixed size arrays (easier to handle on 

GPUs) and no empty events  (no unoccupied threads) → careful organization of 
input data in a real application, where events have different sizes!
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Next steps

This work is a starting point for future developments of accelerator-based trigger 
algorithms.

Very next steps
● Implementation in OpenCL, comparison vs CUDA on Nvidia and AMD GPUs;
● Performance on Nvidia GPU paired to ARM processor
● Results will be shown at next NSS  

Possible future applications:
● LHCb and CMS high level trigger
● MicroBoone (calibrations and hit finding, 3D track fitting)
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BACKUP
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Hardware specifications
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Latency distributions

To study the stability over time we increased 
the number of loops from 100 to 10k.

The distribution of all latencies is very narrow 
on the CPU, while it shows multiple peaks 
and long tails on GPU/MIC.

Probably due to CPU-GPU/MIC 
communication.  

CHECK!!!
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Data copy mechanisms
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Data transfer latency for small data sizes

Input data (Bytes)
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