

Simulation and analysis of the LUCID experiment in the Low Earth Orbit radiation environment

T. Whyntie*,†, M. Harrison*

* Langton Star Centre, † Queen Mary, University of London

CHEP 2013, Amsterdam

Tuesday 15th October 2013

A brief history of LUCID

In 2008, the <u>Simon Langton Grammar</u> <u>School for Boys</u> entered a satellite experiment design competition run by the British National Space Centre (now <u>UK Space Agency</u>) and <u>Surrey</u> <u>Satellite Technology Limited</u> (SSTL).

- The Langton Ultimate Cosmic ray Intensity Detector (LUCID) would use Timepix detectors, developed by the Medipix Collaboration, to measure the space radiation environment in Low Earth Orbit.
- Designed by students, built by SSTL, now due to launch in February 2014.
- LUCID now part of <u>CERN@school</u>, supported by UK Science and Technology Facilities Council (STFC) Large Award ST/J000256/1.

Overview

• Introduction:

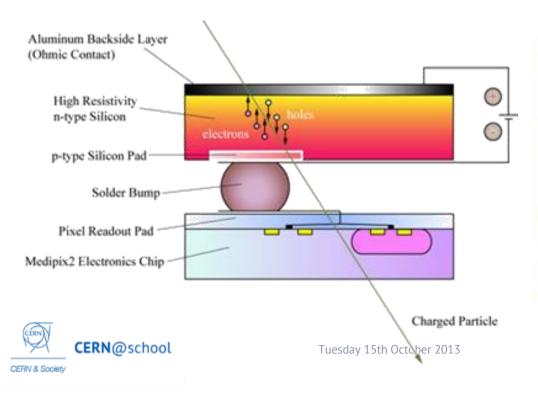
A brief history of LUCID, the Timepix detector, the LUCID experiment, TechDemoSat-1.

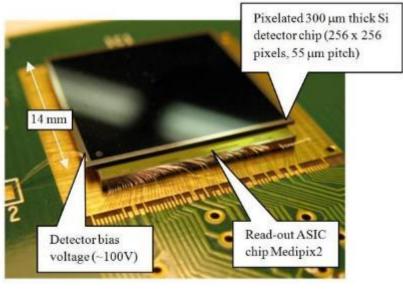
Simulating LUCID:

GEANT4, experiment geometry, particle sources from SPENVIS, simulation management.

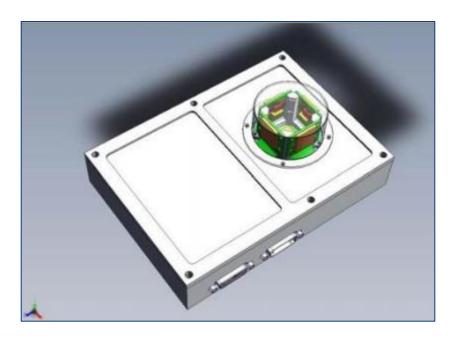
Simulation results:

- Trapped protons, trapped electrons, estimated data rates, discussion, further work.
- Summary and conclusions.




The Timepix detector

The Timepix hybrid silicon pixel detector (<u>Llopart et al. 2007</u>), developed by the <u>Medipix Collaboration</u>, features a 300 μ m thick silicon sensor bump-bonded to a Timepix readout chip. 256 × 256 pixels of pitch 55 μ m provide 65,536 readout channels from the 1.98cm² sensor element.

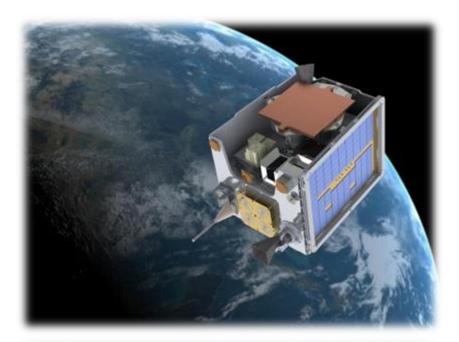

It can be used to detect ionising radiation, make energy measurements (with calibration) and perform particle identification (to an extent). It has never been used in *open space*.

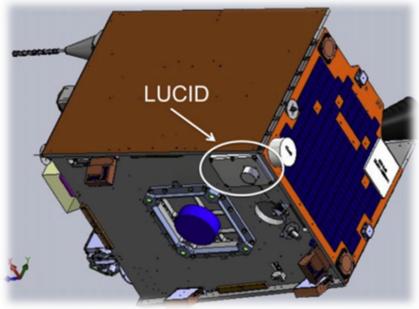
The LUCID experiment

The Langton Ultimate Cosmic ray Intensity Detector experiment features five Timepix detectors in an open-faced cube, housed in a ~0.7mm aluminium "dome", to measure the LEO radiation environment.

Data taking/transmitting capabilities:

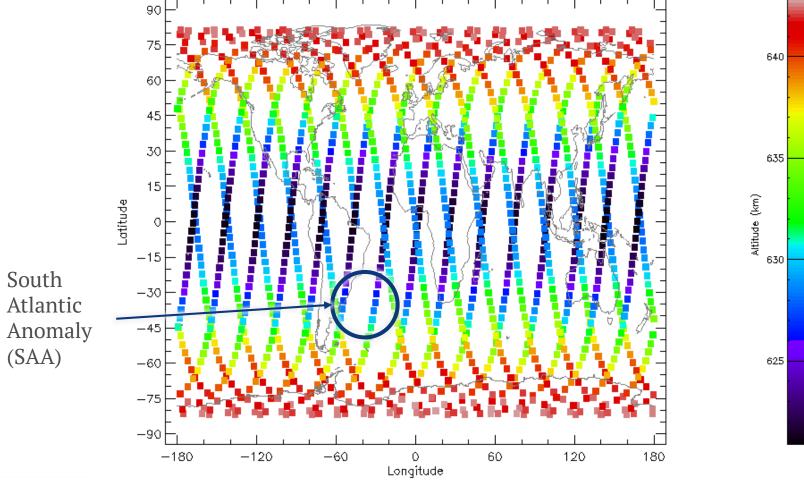
- Shutter frequency: ~4Hz
- Transmission: 80Mbs⁻¹ (20Mbs⁻¹);
- Storage: 2GB;
- Operational 2 out of every 8 days.


TechDemoSat-1


LUCID will launch aboard **TechDemoSat-1** from Baikonur Cosmodrome aboard a Soyuz 2b launch vehicle in February 2014.

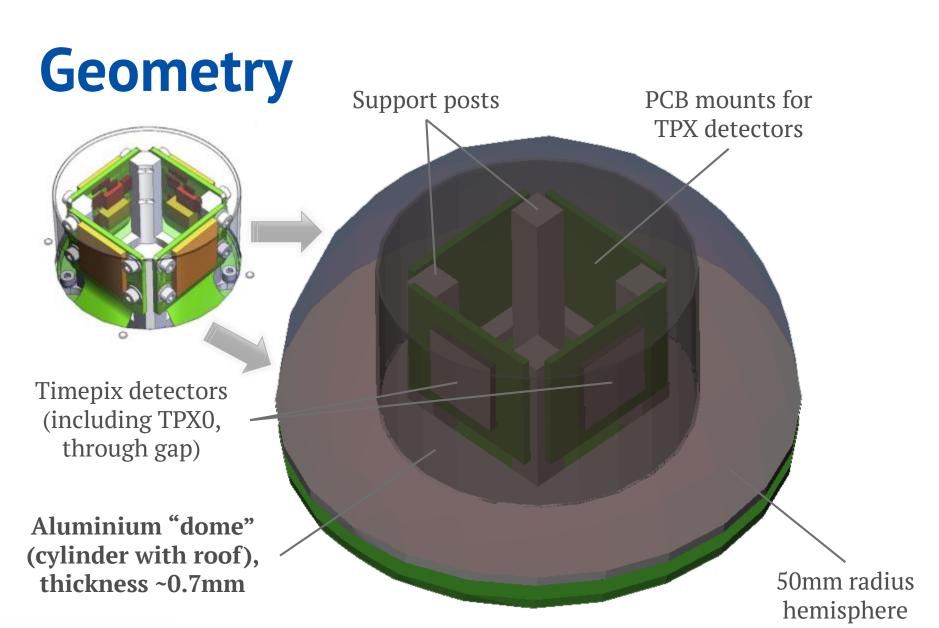
- TechDemoSat-1 is an "in-orbit test facility" from SSTL supported by the UK Technology Strategy Board;
- Many scientific payloads from UK academic institutions/labs, of which LUCID is one.

Orbit parameters


- *Altitude*: 635km;
- *Orbit*: sun synchronous;
- *Inclination*: 98.4°;
- *LTDN*: starts at 0900, with drift of 40 minutes per 6 months.
- *Dominant radiation sources*: trapped protons and electrons, outer electron belts (poles).

TechDemoSat-1

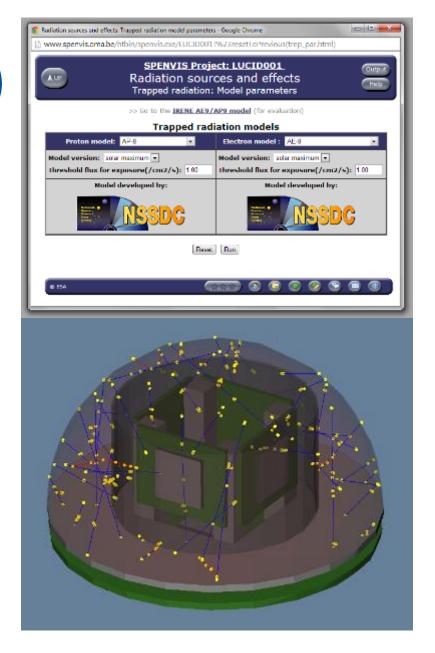
Aims and objectives


- Scientific goals of LUCID:
 - *Directionality of particles* (assumed to be isotropic):
 - Pattern recognition and estimate angle of incidence
 - Particle spectra:
 - Measure particle intensities and their change over time
 - Determine dose (J/kg) and LET spectrum
 - Solar flares/SPEs:
 - Difference in time between electron and proton surges
 - Log sun activity for mission life time (> 50% solar cycle)
 - Forbrush Decrease.
- Goals of the work presented here:
 - Provide estimates of the expected data rates that LUCID will see;
 - Establish modelling and simulation workflows for the experiment;
 - Groundwork for more complicated/computer intensive simulations.

Simulation with GEANT4

- **GEANT4** has been used to simulate the detector, its surroundings and the particle source(s) in order to obtain data rate estimates.
 - Particular inspiration from J. Idarraga (CERN/Medipix):
 - <u>Allpix</u> full chain simulation of Medipix family (and others);
 - Ultimately, LUCID will be modelled with Allpix, but such detail is not needed for these estimates.
 - Method:
 - Model the experiment geometry;
 - Model the Low Earth Orbit particle source(s);
 - Obtain pixel hit rates, combine with flux values to get [bs-1] estimates.
 - The default GEANT4 physics settings have been used.

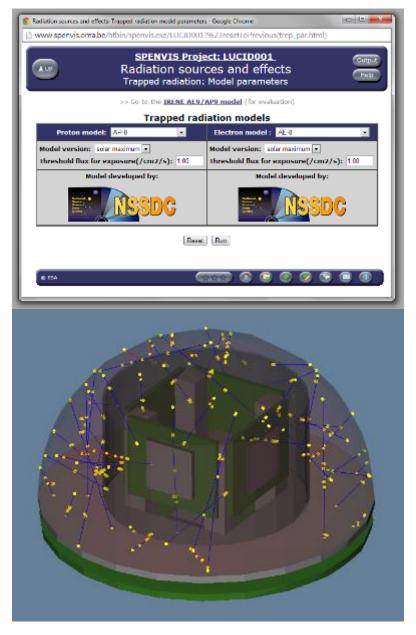
Tuesday 15th October 2013


Particle source(s)

SPENVIS

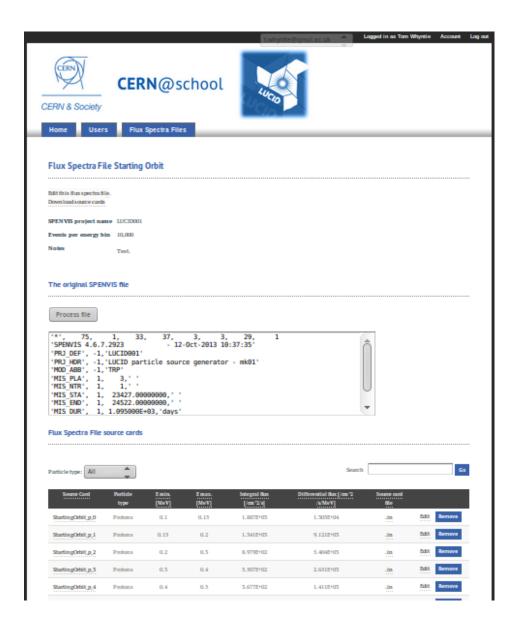
- ESA-backed "Space Environment Information System" web portal.
- Spacecraft coordinate generators:
 - Input LUCID orbit details.
- Trapped radiation models:
 - AP-8 for protons and electrons;
 - Int. and diff. flux spectra.

GEANT4 General Particle Source (GPS)


- Hemi-spherical surface, energy sampled from flux spectra energy bins;
- *Right*: 50 10-20 MeV protons ("dome" made partially transparent for clarity).

Particle source(s)

```
Source particle type
/gps/particle proton
# Source particle energy
/gps/ene/type Lin
/gps/ene/min 10.0 MeV
/gps/ene/max 15.0 MeV
/gps/ene/gradient 0.0
/gps/ene/intercept 1.0
# Source particle geometry
/gps/pos/type Surface
/gps/pos/shape Sphere
/gps/pos/centre 0. 0. 0. mm
/gps/pos/radius 49.9 mm
/gps/pos/confine PseudoDetector phys
/gps/ang/type cos
# Run the simulation.
/run/beamOn 50
```

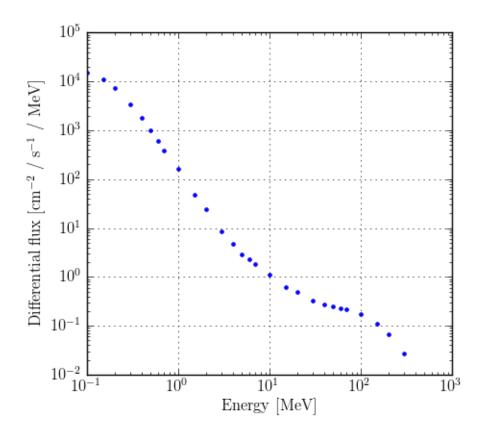



LUCIDITY

The LUCID Interactive Test sYstem:

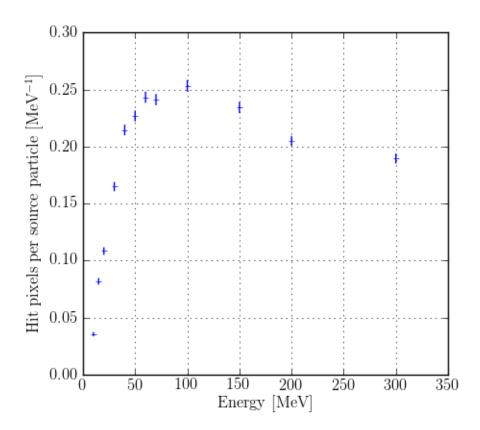
- A web portal for managing LUCID simulations, source cards, results.
- Ruby on Rails with a MySQL backend. Uses Hobo – a collection of gems and plug-ins for making fully-functioned web apps quickly:
 - http://www.hobocentral.net/
- Hosted on an AWS VM (Ubuntu 12.04 Server). Deployed with Phusion Passenger/Apache. Email with SES, storage with SE2.
- Import SPENVIS spectra, process, download GEANT4 source cards, upload simulation results.

Tuesday 15th October 2013



Calculating the data rate

Differential data rate	=	Differential flux	Source geometry	Hit pixels per source particle	Bits per pixel
[bs ⁻¹ MeV ⁻¹]		[particles cm ⁻² s ⁻¹ MeV ⁻¹]	[cm ²]	[pixels particles ⁻¹]	[b pixels ⁻¹]
		Obtained from SPENVIS/AP-8 models.	Hemisphere (R =5.0 cm) in an isotropic source: $\frac{1}{2}\pi R^2$	Obtained from GEANT4 simulations of simplified LUCID geometry. All five Timepix Sensitive Detector volumes recreated, hits in 55µm pixels count only once per event.	16 bits per pixel: 14 for Time-over-Threshold value, 2 for overhead.

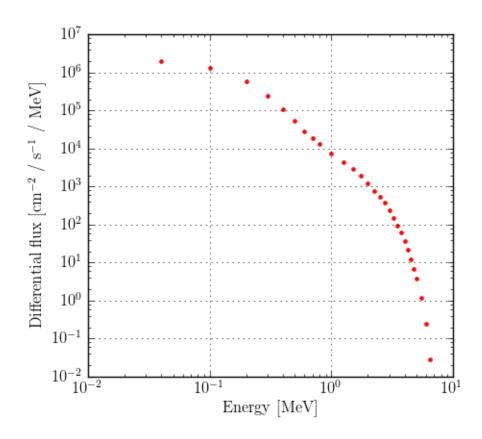

Results - protons

Differential flux (SPENVIS/AP-8 trapped proton model).

Results - protons

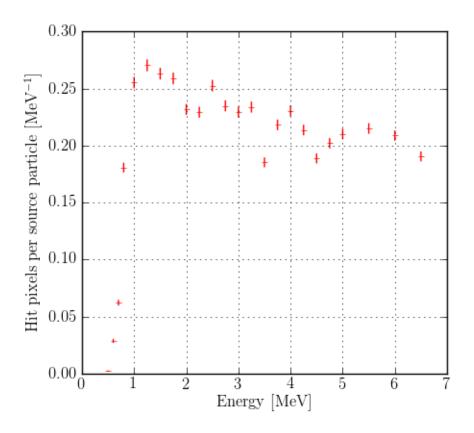
Hit pixels per source particle (SimLucid GEANT4 model).

Results - protons


Required data rate summed over all energy bins due to trapped protons in LEO:

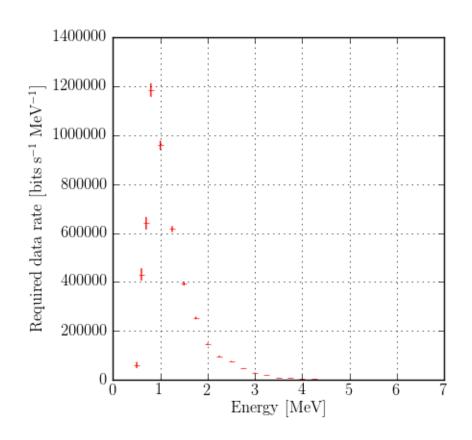
$$= (5.30 \pm 0.04) \text{ kbs}^{-1}$$

Required data rate due to LEO protons.


Results - electrons

Differential flux (SPENVIS/AP-8 trapped electron model).

Results - electrons



Hit pixels per source particle (SimLucid GEANT4 model).

Tuesday 15th October 2013

Results - electrons

Required data rate summed over all energy bins due to trapped electrons in LEO:

$$= (1.01 \pm 0.01) \text{ Mbs}^{-1}$$

Required data rate due to LEO electrons.

Results - discussion

Observed particle rates:

- As expected, low energy particles shielded by aluminium dome while keeping energies of interest;
- About 1 Mbs⁻¹ from trapped radiation in LEO (solar maximum) for all detectors, dominant contribution comes from electrons;
- Errors: statistical plotted, "factor of 2" from AP-8 models.

Comparing with LUCID technical capabilities:

- 1 Mbs⁻¹ suggests 0.2 frame s⁻¹ per detector, so at 4Hz shutter speed the frame occupancy is \sim 5% (256x256x16 bits per frame);
- 20 Mbs⁻¹ data transfer, 2GB storage space sufficient.

Further work to be done:

- Allpix full chain simulations (on Grid), other radiation environment (e.g. outer belt electrons, SAA).

Summary and conclusions

- The LUCID experiment, featuring five Timepix detectors, has been modelled in **GEANT4**.
- **SPENVIS** has been used to obtain input flux estimates for proton and electron fluxes in Low Earth Orbit.
- A web portal, **LUCIDITY**, has been developed to manage simulation parameters and results for the LUCID Collaboration.
- Simulation results indicate that the data rates required as a result of trapped protons and electrons should be within LUCID's capabilities.
- There is still plenty to do before **TechDemoSat-1** launches in February 2014!

Further information: http://cernatschool.web.cern.ch @CERNatschool @Olangtonstar@twhyntie@PhysicsatQM

T. Whyntie*,†, M. Harrison*

* Langton Star Centre, † Queen Mary, University of London

CHEP 2013, Amsterdam

Tuesday 15th October 2013

