Belle II Physics Analysis Model

Phillip Urquijo Bonn University CHEP, Amsterdam October 2013

B-factories • A Success Story

Measured CKM matrix elements and angles of the Unitarity Triangle (→2008 Nobel Prize)
Many searches for New Phenomena in flavour.

Possible due to unique capabilities of B factories clean events, detection of neutrals & neutrinos.

 \bigcirc SM holds, precision limited \rightarrow next generation expt.

B-factories • A Success Story

Measured CKM matrix elements and angles of the Unitarity Triangle (→2008 Nobel Prize)
Many searches for New Phenomena in flavour.

Possible due to unique capabilities of B factories clean events, detection of neutrals & neutrinos.

 \bigcirc SM holds, precision limited \rightarrow next generation expt.

2

FPCP2013

B-factories • A Success Story

 Measured CKM matrix elements and angles of the Unitarity Triangle (→2008 Nobel Prize)
 Many searches for New Phenomena in flavour.

Possible due to unique capabilities of B factories clean events, detection of neutrals & neutrinos.

 \bigcirc SM holds, precision limited \rightarrow next generation expt.

 Belle II's new regime of NP searches
 E_{miss} :B→τ/μν, B→Xτν, B→hνν
 Radiative: B→X_{s,d}γ, B→X_sII
 CPV/Neutrals: B→K_s π⁰ γ, B_s→γγ
 Tau LFV
 Quarkonium (minimal trigger impact)

Charm ...

<section-header>

Test Analyses

2

CHEP 2013, Belle II Physics Analysis Model

Phillip URQUIJO

1.5 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.5 2.0 1.0 1.5 2.0

FPCP2013

Belle→Belle II

Belle experiment @ KEKB e⁺e⁻ collider 1ab⁻¹ data, mostly Y(4S) (1999-2010)

•B, D, τ ++.

Belle II experiment @ SuperKEKB (online in 2015) [500+ collaborators, 96 institutes]

- 40x collision rate: L=8 · 10³⁵ cm⁻²s⁻¹ 50x data sample: 10 ab-1/year
- New detector technology throughout.
 - Pixel detector alone: 2 GB/s!

Belle II

universitätbor

З

CHEP 2013, Belle II Physics Analysis Model

Belle→Belle II Challenges

Higher background (×10-20)

Occupancy, fake hits and pile-up noise

Higher event rate (×10)

Trigger, DAQ and computing

Special features

Better at low p_T, & hermeticity

Rising to the challenge

- Pixel detector.
- Better particle ID
- Faster readout
- New computing system
- Entirely new analysis model.

CHEP 2013, Belle II Physics Analysis Model

Data Volume

Belle II TDR, KEK Report 2010-1, arXiv:1011.0352

**Under development

5

CHEP 2013, Belle II Physics Analysis Model

Belle II Software Requirements

Key Reconstruction algorithms:

- Low p_T tracking (~100 MeV) & μID
- Precise(calibrated), low noise Calorimeter response
- Precise vertexing, flavour tagging
- Full reconstruction of B and D mesons
- Beam background suppression (10-20x)
 - Changes to the physicist's interface: Paradigm shift to centralised processing (faster/precise)
 - Grid based model
 - Persistent analysis object class "layer"
 - Centralised "plug-in" analysis tools (minimise user tools on Grid)
 - Greater precision & measurement repeatability
 - Centrally managed signal MC w/provenance.

Phillip URQUIJO

Reconstruction Performance

Further details in backup

Belle II Analysis Software Framework (BASF2)

- All algorithms are modules (base class), minimal core overhead.
- DataStore manages all data loaded or created during event processing
- Can store any class that inherits from T0bject and has a R00T dictionary

Where possible keep external tools (Evtgen, GenFit, DAF) as externals.

Analyses use compiled C++ algorithms with Python settings

Data can be grid provenance tracked.

CHEP 2013, Belle II Physics Analysis Model

Phillip URQUIJO

Analysis Flow

Analysis flow (Physics Trigger \rightarrow nTuple)

 Very many physics channels.

> from low(rare) stats to high(precision) .

See || talk by
 T. Kuhr on Belle II
 Grid & index files

10

CHEP 2013, Belle II Physics Analysis Model

Data model

CHEP 2013, Belle II Physics Analysis Model

Phillip URQUIJO

11

new

6

 \square

elle

universitätbonn

Physics Trigger

Applied at end of online reconstruction

Calibration constants not tuned, PXD not available.

Based on offline physics analysis model & steering mechanism.

Trigger	Pre	scaled?				
(rad.) Bhabha	Υ		🚽 🖌 + Fii	ner Categorisation		
µ-pairs	Υ			-		
τ-pairs	Ν	4				
2-photons	Υ					
Hadronic (B,D)	Ν					
Salvage	Υ					
CHEP 2013	, Belle	II Physics Ar	nalysis Model	Phillip URQUIJO	12	universitätbonr

Physics Skim

Selection of interesting events, after mDST reconstruction.

- 2 data formats: index (event pointers), and derived data μDST(w/mDST).
- Centralised reconstruction of Particle candidates

Python selection archived between metadata & Bellell repository!
 Content delivery: µDST subscription or distribution service is to be determined.

CHEP 2013, Belle II Physics Analysis Model

Phillip URQUIJO

Estimate of resources

Trigger Skims	pB/ ab ⁻¹	Skim Group (Grid)	pB/ ab ⁻¹	User Physics Skims (Local)	*Exclusives skims
Hadron Trigger		B _{tag}	0.07	V _{ub} B→τ/μ/e v	 will be further grouped *Skim optimisation tools prepared Estimates include MC (average of 2.5 streams)
				B→D*τ v	
		Radiative	0.04	$B \rightarrow X_{s,d}$	
	1			B→K*/ργ	
		<i>J</i> /ψ	0.02	Charmonium	
				BCPV	
		Charm (D,D _s ,Λ _c)	0.07	D Mixing	
				D CPV	
		>50× Exclusive	0.20	Many	
Tau, Bhabha, 2 Photons	0.1	Various	0.05	Many	
Systematics	0.1	Systematics	0.05	Mony	
		Calibration	0.05	wany	
Total	1.2	0.5 (0.2-0.4 PB per skim group)		0.2 pB (~3TB/ analysis)	
CHEP 2013, Belle II Physics Analysis Model			Phillip URQUIJO	14 universitätbonn	

Analysis Flow

Physics Analysis Framework

Concurrent processing of >100 analyses

Physics Analysis Framework

3 main components

- Analysis data types: that extend Reconstruction data types.
- Tools for selection, combinations, tagging, vertexing etc.
- Preparation of "derived" data formats, and automatic ntuples.

Belle II Particles

Analysts' "Interface".

Persistent.

Collected in ParticleLists,

final state: K, π, e ...

composite: D→Kπ ...

Predefined lists used for skimming & concurrent analyses.

Particle Object

- PDG ID & flavour content
- Mass & p vectors
- Position & error
- > Particle type (Track, Gamma, pi0, composite)
- > mDST index (to Track/ Cluster)
- PID info "relation"
- Daughter "relation"

17

Phillip URQUIJO

CHEP 2013, Belle II Physics Analysis Model

Algorithms & Objects

▶ Combiners	Particle combination.
MC-Matching	Non-trivial MC matching.
Vertex	Suite of fitting methods.
Topology	Continuum (q anti-q) suppression
▶ Tag	B, D tag candidates with MVA classifiers
Rest of Event	Extra tracks, looping tracks, photons

CHEP 2013, Belle II Physics Analysis Model

Phillip URQUIJO

(Persistent) Particle Layer Approach

Efficient concurrent processing of many analyses.

- "Particle Zoo Map" done in Grid "production" mode
- Reconstruct layers: same intermediate candidates in many modes.

CHEP 2013, Belle II Physics Analysis Model

Phillip URQUIJO

Particle Analysis Sequence

1. Grid based "production"

Physics Analysis Framework

Steering. Analysis Parser

- Use common selection, combination, nTuple functions.
- Based on *decay description*
 - •B+ -> D0 (-> K+ pi-) pi-
- "Natural" grammar (Boost library)
 - Arrows, PDG names, Math symbols, analysis functions, mapping.
 - Checks against unphysical analyses.
- Official Skims will use this approach: easy debugging, transparent.

21

Dhysics Analysis Framework

CHEP 2013, Belle II Physics Analysis Model

NTuple tools

Book with standard tool for common parameters.

"Plug-ins" for Events, Particles, MC-matching, Vertices, Continuum suppression, Tagging, Vetoes. (minimises user bugs)

• nTuples provenance tracked (with Belle-II metadata)

CHEP 2013, Belle II Physics Analysis Model

Phillip URQUIJO

Advanced physics toolkit

Novel Algorithms Under Development

Tagging & Vertexing

New Interface for various fitting techniques (e.g.):

- RAVE vertexing: active vertex refitter (based on annealing used in tracking) & full magnetic field map.
- Full decay chain refitting & constraints for neutrals.

Advanced Physics Toolkit

CHEP 2013, Belle II Physics Analysis Model

Phillip URQUIJO

Full Reconstruction (B & D)

Most computationally intensive task in analysis computing

Fully reconstruct one B/D to tag flavour, charge, momentum

Unique tool for Belle II, for decays with neutrinos

Low efficiency, requiring MVAs

CHEP 2013, Belle II Physics Analysis Model

Phillip URQUIJO

Tagging Algorithms

	e.g. Belle
Method	NeuroBayes optimised, 4 Particle selection layers with individual classifiers
Modes	1000
Eff%	0.2-0.3
	High purity, classifier output

Belle II: Integrate with new Particle layer.

CHEP 2013, Belle II Physics Analysis Model

Phillip URQUIJO

Background suppression

Continuum Suppression

- (inspired by B-tagging) Novel general purpose Particle selection MVA class for layers
- Layers: Hadron, Lepton, Photon, Event Shapes

Residual energy & tracks

- Highly tuned account of low E clusters, K_L, (curling) tracks.
- May require MVA classifier for event cleaning.

27

Other

Systematics

e.g. $(J/\psi \rightarrow (\mu\mu,ee), D^* \rightarrow D(K\pi)\pi)$ for PID, Tracking, A_{CP}

- Tuned sample formats. Metadata allow grid lookup of parent DST files.
- Results stored in software tags/releases or DB.
- Application through plug-in correction tools at xDST "object" level.

Validation

 We hold regular tutorials & nightly physics validation of the framework.

Phillip URQUIJO

Conclusion

- Belle II will collect 10 ab⁻¹/year, requiring a well designed analysis model.
- New layer of analysis tools & objects designed to improve precision, repeatability, reduce computation time for all analyses.
 - Centralised particle selection.
 - Analysts should see >1 order of magnitude speed improvement.
- To fully exploit Belle II data, complex tagging tools are key: framework is being built for them.

2 years of R&D with benchmarking until first collision data.

Backup

Problem-solution checklist

Belle	Belle II
Skimming/filtering often done repeatedly per analysis, per person on the full data set (and often not done carefully enough). Time consuming step.	Centralised skimming framework.
Many analyses share common reconstruction steps, e.g. D, D*, τ modes for B reconstruction. But privately shared reconstruction code and ran separate jobs.	Persistent Particles: Standardised vertexing, Rapid-accurate systematics, Common Particles.
MC produced privately was very slowly, and with more bugs with respect to coordinated production.	Centralised, book keeping
Minimal plug in systematics tools.	Dedicated systematics skims with provenance. Plug-in to BASF2 root DST format.

Backup

Belle II Detector

CHEP 2013, Belle II Physics Analysis Model

Phillip URQUIJO

Tracking

Vertex Detector

2 layers DEPFET + 4 layers DSSD

Algorithms under development

- General: Deterministic Annealing Filter,
- Si only (slow π): cellular automaton with Hopfield network NN.

J Lettenbichler et al 2012 J. Phys.: Conf. Ser. 396 022030

Shown: Kalman

Calorimetry

EM Calorimeter new waveform sampling: CsI(TI) (barrel), Pure CsI (end-caps)

I. Nakamura et al 2009 J. Phys.: Conf. Ser. 160 012003

Timing information \rightarrow off-time rejection + calibration schema.

Particle Identification

Particle Identification

Time-Of-Propagation counter (barrel) Prox. focusing Aerogel **RICH** (fwd)

• Likelihood of TOP or **A**RICH + dE/dX (CDC). • *c.f.* CPV in $B \rightarrow \rho^0(\pi\pi)\gamma$, Background $B \rightarrow K^{*0}(K\pi)\gamma$

