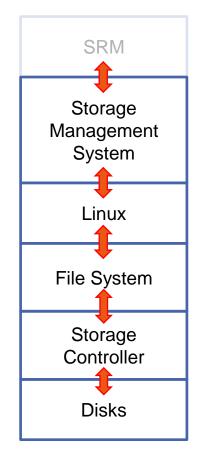


Preview of a Novel Architecture for Large Scale Storage

Andreas Petzold, Christoph-Erdmann Pfeiler, Jos van Wezel Steinbuch Centre for Computing


STEINBUCH CENTRE FOR COMPUTING - SCC

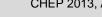
Storage Management Systems at GridKa

- dCache for ATLAS, CMS, LHCb
 - 6 PB disk-only
 - 3 PB tape-buffers
 - 287 pools on 58 servers
 - Agnostic to underlying storage technology
- Scalla xrootd for ALICE
 - 2.7 PB disk-only/tape buffer
 - 15 servers
 - Agnostic to underlying storage technology

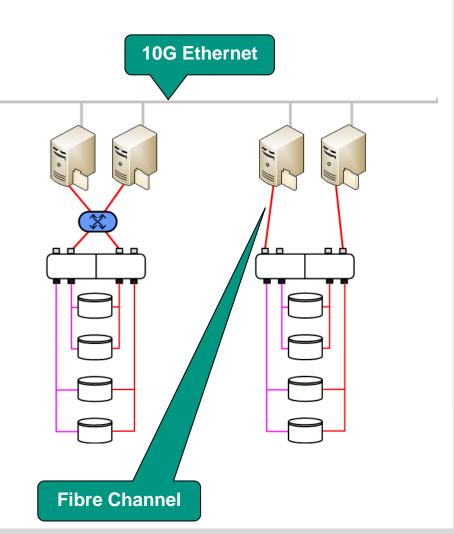
Current GridKa Disk Storage Technologies

9 x DDN S2AA9900

- 150 enclosures
- 9000 disks
- 796 LUNs
- SAN Brocade DCX
- 1 x DDN SFA10K
 - 10 enclosures
 - 600 disks
- 1 x DDN SFA12K
 - 5 enclosures
 - 360 disks


Current GridKa Tape Storage Technologies

- 2 Oracle/Sun/STK SL8500
 - 2 x 10088 slots
 - 22 LTO5, 16 LTO4
- 1 IBM TS3500
 - 5800 slots
 - 24 LTO4
- 1 GRAU XL
 - 5376 slots
 - 16 LTO3, 8 LTO4



GridKa Storage Units

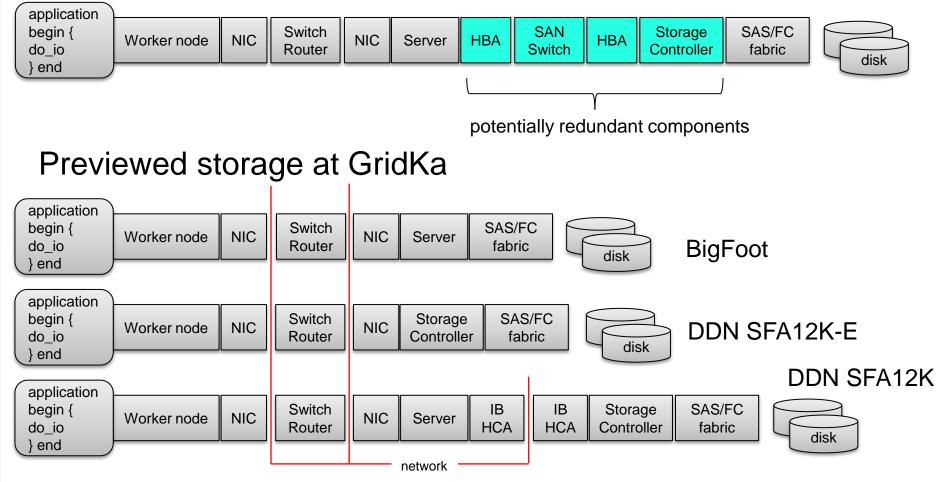
Servers

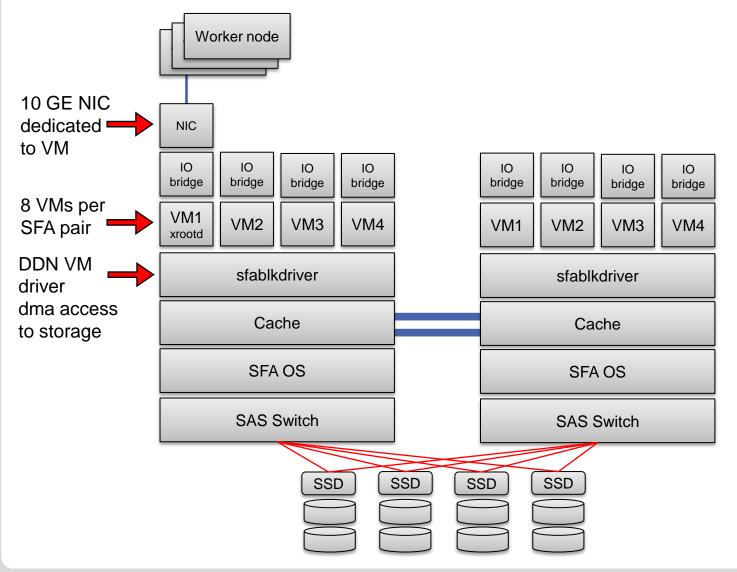
- connect directly to storage
- or via SAN but not explicitly needed
- Cluster Filesystem (GPFS)
 - connects several servers
 - filesystem visible on all nodes
 - predictable IO throughput
 - nice storage virtualisation layer
- Currently evaluating alternative filesystems XFS, ZFS, BTRFS, EXT4

Novel Storage Solutions for GridKa

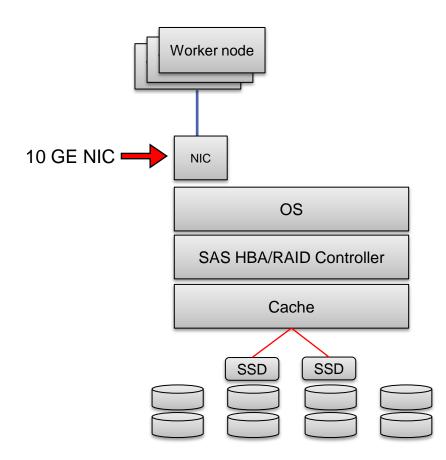
- Expect large resource increase in 2015
 - Chance to look at new solutions during LHC LS1
 - Simplification in operations and deployment required
- Solution 1: DataDirectNetworks SFA12K-E
 - Server VMs run embedded in storage controller

- Solution 2: Rausch Netzwerktechnik BigFoot
 - More conventional setup; server directly connected to local disks




Shortening Long IO Paths

Traditional storage at GridKa


DDN SFA E Architecture

Karisruhe Institute of Technology

BigFoot Architecture

Thoughts on Effect of SAN and Long Distance Latency

- IO is different for read and write
 - writes can be done asynchronously
 - but if you do them sync (like NFS) you have to wait for the ACK
 - workloads are read mostly
 - read are synchronous

- reading huge files linearly defeats caches in servers
- SSD speeds
 - example: Enterprise MLC SSD, Violin memory, Fusion IO drive
 - number of IOPS: 250000/s (lower estimate) at 4 k/IO

•
$$\frac{1 s}{250000} = 4 \ \mu s \rightarrow 4 \ \mu s \ per IO$$

- SAN Latency
 - DCX director 2.1 μ s \rightarrow 4.2 μ s round trip
 - not accounting HBA, fibre length (300 m = 1 μ s)

Thoughts on Effect of SAN and Long Distance Latency

Effect on high speed SSDs

 $\frac{1}{2 * 2.1 \mu s + 4 \mu s} = 121951 \text{ IOPS} \text{ not} 250000 \text{ IOPS}$

- similar for disk controller caches when used for VMs or data servers
- Negligible impact of SAN for magnetic disks

$$\frac{1}{2 * 2.1 \mu s + 5000 \ \mu s} = 199 \ \text{IOPS}$$

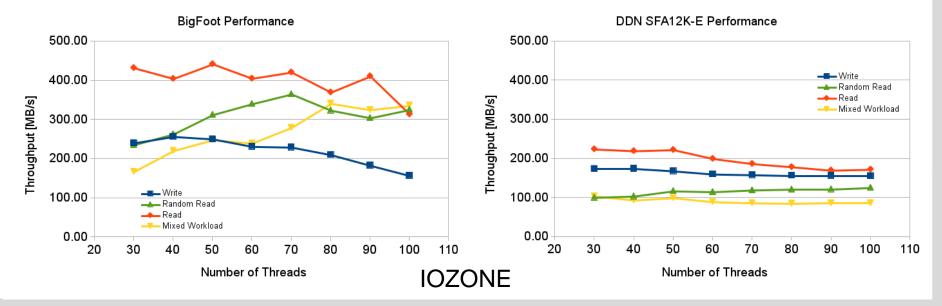
- Putting the SSD next to the server can possibly increase the number of IOPs
 - assumption will be tested in the coming weeks

Expected Benefits

- Reduced Latency
 - HBA and SAN: 2.1 µs (e.g. Brocade DCX, blade to blade) storage controller
 - Improved IO rates
- Reduced power
 - Server and controller HBA, SAN Switch
 - ~300-400W = ~600Euro/server/year
- Reduced investment
 - 500-600 €/HBA, 400-600 €/switch port =1800-2400 €

Improved MTBF

Less components


Possible Drawbacks

- Loss in flexibility
 - w/o SAN storage building blocks are larger
 - Limited server access to storage blocks
 - Storage systems are only connected via LAN
- VMs inside storage controller (DDN SFA12K-E)
 - Competition for resources
 - Limited number of VMs limits "server/TB" ratio
 - Loss of redundancy
- Simple server attached storage (BigFoot)
 - Limited by simple hardware controller
 - HW admin doesn't scale to 100s of boxes
 - No redundancy

Glimpse at Performance

- Preliminary performance evaluation
 - IOZONE testing 30-100 parallel threads on XFS filesystem
 - Xrootd data server in VM, performance similar to IOZONE
 - Out-of-the-box settings, no tuning
 - Performance below expectations, reasons still to be understood
 - ZFS tested on BigFoot

Conclusions

- Storage extension at GridKa requires expensive upgrade of GridKa disk SAN – or novel storage solution
- Tight integration of server and storage looks promising
- Many possible benefits further evaluation required
 - Less components
 - Less power consumption
 - Less complexity
- Performance needs to be understood together with vendors
- More tests with other vendors in near future

