
P. Saracco, M.G. Pia, INFN Genova 

An exact framework for 

Uncertainty Quantification 
in Monte Carlo simulation 

CHEP 2013 

Amsterdam, 14-18 October 2013 

Paolo Saracco, Maria Grazia Pia 

INFN Genova, Italy 
 



P. Saracco, M.G. Pia, INFN Genova 

Monte Carlo in HEP  

MC  

engine 

Event generator 
(Pythia, Herwig…) 

Particle transport 
(Geant4, MCNP, MARS…) 

primary particles,  

deposited energy… 

2 

cross sections, 

branching ratios, 

physics models, 

physics parameters.. 

How much can we trust the observables produced by MC? 
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Measure and compare 
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Courtesy CERN CDS, CERN-EX-0305054 

Test beam 

If the accuracy of observable A is assessed by 

comparison with experiment, what about observable B? 

And what about the simulation of detector concepts, 

which do not exist yet? 

And observables which cannot be measured in practice? 

Measured and simulated 

observable 
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Uncertainties 
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Monte Carlo method 

Statistical uncertainty 

Uncertainties deriving from 

• input uncertainties  

• Monte Carlo algorithm 

• simulation model  

Uncertainty quantification is the ground for 

predictive Monte Carlo simulation  

Beware: input uncertainties 

can be hidden in models and 

algorithms in the code 

Validation of  

MC modeling 

ingredients 
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Parameter uncertainties 
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They are the uncertainties of the “ingredients” of the simulation 

engine (particle transport system, event generator) 

Can they be disentangled from statistical uncertainties 

associated with the Monte Carlo method? 

Can we estimate their effect on the observables 

produced by the simulation? 

Sensitivity 

analysis 
Exact 

calculation  
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Input physical data 

(with uncertainties)  

Physical data sample 1 Physical data sample 2 Physical data sample NMC …

Simulation 1 Simulation 2 Simulation NMC 
…

Observable distribution 1 Observable distribution 2 Observable distribution NMC …

Statistical analysis 

Observable ± error 

Sensitivity analysis 
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Computational cost 

• Mathematical methods 

• Software toolkits (DAKOTA, PSUADE..) 

To reduce computational costs, one can reduce the sensitivity 

analysis to the search for the most probable output 

this means giving up a full statistical characterization of the output 
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Disentangling uncertainties I 
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Algorithmic (statistical) and parameter uncertainties 

How do statistical and parameter uncertainties mix in a simulation 

environment? 

 

EXAMPLE: a (very) simplified “transport code”, a random path generator 

ruled by two constant parameters describing the relative probability of 

absorption (SA) and scattering processes (SS), sampling an observable – 

track-length in this case. 

 
(by the way, this simulates the propagation of neutral particles in an uniform medium with 

constant scattering and absorption cross-sections and isotropic scattering) 

 

If SS is affected by some uncertainty, say SS, min< SS < SS, max we run 

many simulations varying its value with some known probability (for 

instance flat) 
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Disentangling uncertainties 
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Algorithmic (statistical) and parameter uncertainties 

15000 simulations 

(a) 105 events 

(b) 5 105 events 

(c) 106 events 

(d) 108 events 

As statistical errors decrease, the distribution of the observable 

is dominated by parameter uncertainties only 

Results for a track 

length observable 

scored in a volume 

near the source 



P. Saracco, M.G. Pia, INFN Genova 

Uncertainty propagation  
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The PDF for the result of the simulation is given by 

 

 

 

that in the limit             becomes 

 

 

 

 

This last shows how an input uncertainty exactly “propagates” into the 

probability distribution of the output. 

 

We must know (and invert) the “susceptivity” x0(SS)!!!  

We can use MC to study this. Lower computational cost 
 

GMC (x) @ dSS
-¥

+¥

ò f (SS )exp -
(x - x0(SS ))

2

s 2

x0
/ N

é

ë
ê
ê

ù

û
ú
ú

N

2ps 2

x0

N®¥

G(x) = dSS f (SS )d(x- x0(SS )) =
dSS (x0 )

dx0 x0=x

f (SS (x))
-¥

+¥

ò



P. Saracco, M.G. Pia, INFN Genova 
10 

Uncertainty propagation: verification 

Example: evaluate the  

area of the circle  

with some flat uncertainty 

on the measure of its radius 
 
f(R)=q(R-Rmin)q(Rmax-R)/(Rmax-Rmin) 

 

A(R) = p R2 
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G(A) =
J (A- Amin )J (Amax - A)

2 Amax - Amin( )´ A

Metropolis 

simulation,  

50K samples 

Metropolis 

simulation,  

1M samples 

analytical result 

analytical result the exact solution is known 
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The task of UQ 
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The feasibility of UQ requires: 

 

1) To know input uncertainties and their probability distributions 

Validation of MC modeling ingredients needed 

 

1) To be able to solve explicitly for G(x):  

An exact mathematical context needed 

 

2) To use MC simulations to determine parameters in G(x):  
(in the previous example, to find Amax/min from simulation and to determine the 

proper behavior A-1/2) 

Possible with few simulations with predetermined accuracy 

2) is independent from the features of the specific problem 

and can be solved within the scope of wide assumptions 

this is an exact mathematical frame for UQ 
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UQ for a 1 parameter problem 

We must determine the relationship x0(S) between the input parameter 

S and the (exact) result for the required  physical observable x0. 

 

This can be done with 

few (21 in the case) 

MC simulations at 

fixed values of SS 

within its range of 

variability. 

_________ 

An example of this 

procedure in the 

previous simple 

transport problem for 

observables at 

different distances 

from the source. 

 

Back to the transport example where x0(SS) is unknown 

Note the linear relationship x0(S) 
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Many parameters problem 
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In the generic case we have many input parameter unknowns: 

 

 

 

We make two “reasonable” assumptions: 

- the Sk are independent 

-         is linear (if necessary subdivide the domain of variability of the 

unknowns in such a way to fulfill the condition)  

 

Under these hypothesis the evaluation of G(x) reduces to a well 

known problem in probability theory: the determination of the weighted 

sum of a certain number of independent stochastic variables. 

 

Unfortunately even this problem is not soluble in general 

G(x) = dS f (S)d(x - x0 (S))
-¥

+¥

ò

x0 S( )

Can we solve it? 
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Some remarks 
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Under these assumptions                        with sk
2 the variances of 

the individual input unknowns. 

 

For M input unknowns we need a priori M+1 simulations to  

 

determine the values         , a task that can be pursued reasonably  

 

if the number of input unknowns is not so large. 

 

So detailed physical knowledge of the problem at hand is required 

to select a proper set of physical parameters on which is 

meaningful to attempt a full Uncertainty Quantification. 

 

We then emphasize that a full UQ is PROBLEM SPECIFIC 
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BUT we are not sure that sx
2 is a proper measure of the output 

uncertainty, since we do not know the exact form of G(x). 

 

In some useful selected cases the form of G(x) is known: 

- all the input unknowns are normally distributed: in such case G(x) is 

normal with the quoted variance 

- all the input unknown are uniformly distributed: in such case a 

generalization of the Irwine-Hall distribution holds 

- all the input unknowns have a-stable distributions with the same a 

value: in such case G(x) is again a stable distribution with the same 

a value (e.g. the Lorentz distribution) 

 

We recently proved that a general form exists for the weighted 

sum of generic polynomial distributions over different intervals: 

this result can be used in principle to find an approximate form of 

G(x) with arbitrary predetermined accuracy in the general case. 
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Current scope of applicability 
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Single parameter uncertainty (see [1]):  
- complete analysis of uncertainty propagation available  

- simulation is used solely to determine the values of the parameters defining the 

output probability density function 

- confidence intervals for the output are known with a statistical error that can be 

predetermined 

 

Many parameter uncertainty (see also [2]):  
- a complete UQ is possible only for independent input uncertainties.  

- calculability issues may exist, in practice, if the number of parameters 

considered is high and/or if linearity of x0(Sk) is questionable 

- confidence interval for the output are affected by the statistical errors in the 

determination of the required parameters AND by errors in the polynomial 

approximations required 

- in principle a predefined accuracy can be obtained 

- calculation issues must be studied 

[1] - P. Saracco, M. Batic, G. Hoff, M.G. Pia – “Theoretical ground for the propagation ofuncertainties in Monte Carlo particle 

transport”, submitted to IEEE Trans. Nucl. Phys., 2013. 

[2] – P. Saracco, M.G. Pia – “Uncertainty Quantification and the problem of determining the distribution of the sum of N 

independent stochastic variables: an exact solution for arbitrary polynomial distributions on different intervals”, submitted to 

Journ. Math. Phys., 2013.  
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Validation of physics ingredients 

The validation of the physics “ingredients” of Monte Carlo 

codes is a (complex, slow) still ongoing process  

‒ at least regarding Monte Carlo particle transport 

Quantitative estimates of input uncertainties (cross sections, 

angular distributions, BR etc.) are necessary for uncertainty 

propagation 

‒ A qualitative plot is not enough… 

Epistemic uncertainties are often embedded in the code, 

without being documented 
‒ See M. G. Pia, M. Begalli, A. Lechner, L. Quintieri, P. Saracco, Physics-related epistemic uncertainties 

of proton depth dose simulation, IEEE Trans. Nucl. Sci., vol. 57, no. 5, pp. 2805-2830, 2010 
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Conclusion and outlook 

A novel conceptual approach 

A mathematical framework  

Calculation methods for single 

and many parameter uncertainties 

18 Collaboration with HEP experiments is welcome! 

to determine the 

intrinsic uncertainty  

of the results of Monte 

Carlo simulation 
(beyond statistical uncertainty) 

We have established 

 Verification in a realistic experimental scenarios 

 Application software system 
Outlook 

These developments are applicable to Monte Carlo simulation in general 

Particle transport 

Event generators  

In parallel, we pursue extensive Geant4 physics validation: 

http://www.ge.infn.it/geant4/papers  

http://www.ge.infn.it/geant4/papers
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Collezione di immagini utili 
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Don’t forget the chef 
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With the same ingredients we obtain very different tastes of the 

soup allowing the chef to modify the recipe 

 

In a simulation context the recipe is chosen by MC user, when he 

defines the experimental configuration: geometry, composition, 

external conditions, … 

 

For the purpose of UQ different experimental configurations – if not 

VERY similar – must be analyzed as different problems 

 

The “simulation engine” is the CODE together with the CHOSEN 

EXPERIMENTAL CONFIGURATION 


