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Motivation

A problem

Given a set P of n points in Rd :

find the two closest points to each other belonging to P (e.g.
Eppstein);
for each q ∈ P, find its closest neighbour in P − q [6];
find all k nearest neighbours of each q ∈ P [4].

Theoretical limits

all solvable in O(n log n) work if an O(n log n) work algorithm spatial
indexing is available.
parallel algorithms using p processors and O(n log n) work
theoretically available (Callahan in [4]).
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Good for HEP and Physics?

Multivariate analysis for TMVA in ROOT uses k nearest neighbours
search. Repeated analysis might benefit of k-d-tree algorithm with
O(n log n) work with decent scalability.

Track reconstruction by joining compatible triplets has been
approached in CMS using k-d-trees and cellular automata. Even the
the simulation of celular automata might demand multidimensional
data organisation when the number of dimensions increase.

N-body computations based on Barnes-Hutt or Fast Multipole
Method in general depend on tree methods.

N-point correlation functions have been tackled in Astronomy by the
use of search in k-d-trees [5].
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Proposed solution

K-d-tree based solution built on

fair split that will lead to Well Separated Pair Decomposition;
balanced partitioning giving O(log n) height independent of input;
work balanced partition and tree construction.

Implementations in the paper

First implementation of a parallel WSPDP algorithm.
Possibly first implementation of a parallel k-d-tree (Lisp, C/OMP,
C++/TBB.)
Parallel scalable implementation of Kth-selection algorithm
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Quadtree (for set P of n points in Rd)

fa
b

c

d

e

A grid-like structure
over the search space

Many nearly empty
spaces/trees

a difficult act to balance parallel work
for unequal regions
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Quadtrees: a choice for parallel spatial indexing?

⊥⊥e⊥

fd.

⊥

⊥cb⊥

⊥a

Parallel work balance?

wasted
space/work

7 comparisons to find c

each node partitions a set of points by all d attributes, each
representing one dimension. partitions for the set in question

Samet [8]: used by all published works on parallel spatial indexing.

disadvantages:

curse of dimensions: number of empty (or nearly empty) partitions
increasing fast with dimensions.
hard to balance the processors’ work.
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Bentley’s K-d-trees

〈x〉
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each node with degree 2,
showing a discriminator

discriminators cy-
cled

6 comparisons to find c
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K-d-trees: questions

K-d-tree by Jon Bentley [2]

Each nodes defines a discriminator (splitting dimension)
Each discriminator has an associated cut value: the dimension value
of the points in the subset being partitioned
discriminators cycle through the k dimension on the path from root
to leaf nodes

Disadvantages

cycling through dimensions can still lead to leaf depth unbalancing
choice of cut value, a problem to be solved
distribution of work on p > 1 processors scenario can be complicated
due to recursive nature
work balancing still a problem
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Fair split based K-d-trees (Callahan)

Splitting criteria

each node defines a range of the space
split close to the middle of the range
split should guarantee either:

balanced distribution of points for children nodes
or total of comparisons on the order of the size of the node being split

Fair split target balanced number of comparisons in sequential split

O(n log n) time for sequential algorithm
split adapts Bentley’s “burning the candle from both ends” algorithm
[1].

Problem for parallel algorithm

split must “guess” (or brute force search) slabs of splitting
Callahan does “hand waving argument” to show that it is possible
Har-Peled [6] proposes splitting based on one of

radix splitting
k-enclosing disk splitting
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Proposed solution

〈y〉

〈x〉

〈x〉

f〈y〉
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〈x〉

ed

each internal node has degree 2

4 comparisons to find c

long queue

short queue
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Parallel K-d-tree build guarantees

Variation from Bentley’s K-d-tree structure

each node defines cutting discriminator
discriminator chosen as largest dimension available for splitting
cut value chosen by a median of medians algorithm

Building algorithm

median of medians algorithm uses O(n) work and scales for p
processors
heuristic variation of medians algorithm guarantees O(n) (with small
constant) splitter located between 3n

10
and 7n

10
, giving logarithmic

height

asynchronously parallel algorithm: full use of all processors as they
become available.
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Splitting for balanced k-d-tree

Split close to the median.

Based on Blum, Floyd, Pratt, Tarjan algorithm of kth-selection
Parallel map blocks of 5 elements to its median
Recursion until block of up to 5 central elements is found.
Easy elimination of recursion.
Guaranteed time in O(n).
Median of final blocks always greater than 3n

10
and less than 7n

10

elements of initial set.
Additional element from final block used for a two pivots split.

Option for split at the middle of the range based on A. Moore [7].
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Parallel k-d-tree algorithm

Sets of nodes to split are kept in two queues.

Long queue split:

all processors all applied to split one node
split in three steps

parallel search for dimension to split
parallel search for splitters using median of 5
parallel split adapting Bentley’s invariant for one pivot to a two pivot
split.

each split node will always produce two or three children.
at least two nodes resulting from one split will have a minimum of 3n

10

points each. O(log n) height guaranteed.

Short queue split:

Each process available takes one node to split with same algorithm
as long queue.
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Performance

Based on gcc (-fopenmp) 4.6, Ubuntu 13.04, Intel xeon 5660.
Sets with up to 216 points processed asynchronously with one
processor.
Speed-up and efficiency shown in the table only for the 1572864 set.

points in 3-d 1 proc 4 procs 8 procs 12 procs
65536 0.856s 0.868s 0.857s 0.854s

252144 3.206s 1.337s 1.235s 1.391s
524288 6.551s 2.545s 1.338s 1.512s
786432 9.724s 3.991s 2.781s 1.862s

1572864 18.43s 7.515s 4.532s 3.623s
Sp 1 2.45 4.14 5.08
Ep 1 0.61 0.51 0.42

Speed-up S12 = T12

T1

Efficiency E12 = S12

12
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What could possibly go wrong?

Too many comparisons: what if median search is too expensive and
cut by the middle is good enough in practice?

Cut by the middle of the largest range is available.
(Extensive) Testing needed.

Long queue move done in two steps that should be improved by
fusion: local three-way split based on Bentley followed by pack
pattern.

Can we fuse the two steps into a categorization pattern?
Careful! Categorization pattern can be very costly!

Is WSPDP too heavy?

Yes, when number of dimensions increase [6].
Sequential approximation algorithm available. Parallel?
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Wrong with parallel model?

Parallelism too irregular.

Algorithm described unsuitable for strict SIMD of most GPUs.
Scan model of computing and Blelloch’s radix sort pattern [3] to
help.
Local SIMD available, but so far not exploited: widest range search,
median computation, local three-way split.

Parallel processing in the long queue not decoupled enough for
distributed memory will demand (maybe too many) data
movements.

Extensive testing/tuning for algorithm with an initial phase of
sampling to distribute points when running on cluster.
MIC computation could be more feasible due to lower
communication costs.
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Conclusion

The simple structure of k-d-trees offers promissing alternatives
regarding:

Restricting the height of resulting trees.
balancing of work load in parallel implementation.

Challenges that need to be worked:

Irregular parallelism of present algorithm not the best regular SIMD
as found in GPUs.
Improving memory management in parallel execution might result in
huge gains in computing time and efficiency.
Scheduling of synchronised steps affects time and efficiency.
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