A well-separated pairs decomposition algorithm for

kd-trees implemented on multi-core architectures

Raul H. C. Lopes
lvan D. Reid
Peter R. Hobson

Particle Physics Group, School of Engineering and Design, Brunel University

October 17, 2013

Brunel

UNIVERSITY

LOHNDOM

Grid~H

50
m\‘\“ . g
UK Computing for Particle Physics

ot

Raul H. C. Lopes Ivan D. Reid Peter R. Hobson K-d-trees on multi-core architectures

Table of Contents

© Motivation

Raul H. C. Lopes Ivan D. Reid Peter R. Hobson K-d-trees on multi-core architectures

@ A problem
o Given a set P of n points in R%:

o find the two closest points to each other belonging to P (e.g.
Eppstein);

o for each g € P, find its closest neighbour in P — g [6];

o find all k nearest neighbours of each g € P [4].

Raul H. C. Lopes Ivan D. Reid Peter R. Hobson K-d-trees on multi-core architectures

@ A problem
o Given a set P of n points in R%:
o find the two closest points to each other belonging to P (e.g.
Eppstein);
o for each g € P, find its closest neighbour in P — g [6];
o find all k nearest neighbours of each g € P [4].
@ Theoretical limits
o all solvable in O(nlog n) work if an O(nlog n) work algorithm spatial
indexing is available.
o parallel algorithms using p processors and O(nlog n) work
theoretically available (Callahan in [4]).

Raul H. C. Lopes Ivan D. Reid Peter R. Hobson K-d-trees on multi-core architectures

Good for HEP and Physics?

@ Multivariate analysis for TMVA in ROOT uses k nearest neighbours
search. Repeated analysis might benefit of k-d-tree algorithm with
O(nlog n) work with decent scalability.

@ Track reconstruction by joining compatible triplets has been
approached in CMS using k-d-trees and cellular automata. Even the
the simulation of celular automata might demand multidimensional
data organisation when the number of dimensions increase.

@ N-body computations based on Barnes-Hutt or Fast Multipole
Method in general depend on tree methods.

@ N-point correlation functions have been tackled in Astronomy by the
use of search in k-d-trees [5].

Raul H. C. Lopes Ivan D. Reid Peter R. Hobson K-d-trees on multi-core architectures

Proposed solution

@ K-d-tree based solution built on

o fair split that will lead to Well Separated Pair Decomposition;
e balanced partitioning giving O(log n) height independent of input;
e work balanced partition and tree construction.

Raul H. C. Lopes Ivan D. Reid Peter R. Hobson K-d-trees on multi-core architectures

Proposed solution

@ K-d-tree based solution built on
o fair split that will lead to Well Separated Pair Decomposition;
e balanced partitioning giving O(log n) height independent of input;
e work balanced partition and tree construction.

@ Implementations in the paper

o First implementation of a parallel WSPDP algorithm.

o Possibly first implementation of a parallel k-d-tree (Lisp, C/OMP,
C++/TBB.)

o Parallel scalable implementation of Kth-selection algorithm

Raul H. C. Lopes Ivan D. Reid Peter R. Hobson K-d-trees on multi-core architectures

Table of Contents

© Multi-dimensional Indexing

Raul H. C. Lopes Ivan D. Reid Peter R. Hobson K-d-trees on multi-core architectures

I I
I I
I I
I I
I I
I I
I I
I I
[I
it Sl el L,
,bC 1 1 |
L4 - —_1 |
I | I I

I
I I I
,\\L\J\\\\\, o ”
I I I

I
I I I
- I I !
o8 1 ___L !

—~
i)
Q<
==
0
4+
=
(@)
o
=
(.
(@)
Q.
)
Q
(7]
[
L
~—
(D]
(O]
—
)
O
T
>
o

—~
i)
Q<
==
0
4+
=
(@)
o
=
(.
(@)
Q.
)
Q
(7]
[
L
~—
(D]
(O]
—
)
O
T
>
o

A grid-like structure
over the search space

Quadtree (for set P of n points in RY)

-
2 L,lb,:f 3 A grid-like structure
| | :C | ' over the search space
[i B
T |
| | | | |
A |
r-——=-=-=-- -TaT---- - === °
| ! . Many nearly empty
| | | spaces/trees
| d ‘ |
| |
| | !
| ! !
|

Quadtree (for set P of n points in RY)

A grid-like structure
over the search space

|
|
l
777777777 |
. Many nearly empty
| spaces/trees
|
|
|

a difficult act to balance parallel work
for unequal regions

Raul H. C. Lopes Ivan D. Reid Peter R. Hobson K-d-trees on multi-core architectures

Quadtrees: a choice for parallel spatial indexing?

a L 1 1l e 1L L

L b c L

@ each node partitions a set of points by all d attributes, each
representing one dimension. partitions for the set in question

@ Samet [8]: used by all published works on parallel spatial indexing.

@ disadvantages:

e curse of dimensions: number of empty (or nearly empty) partitions
increasing fast with dimensions.
o hard to balance the processors’ work.

Quadtrees: a choice for parallel spatial indexing?

Parallel work balance?

LN

a L 1 1l e 1L L

L b c L

@ each node partitions a set of points by all d attributes, each
representing one dimension. partitions for the set in question

@ Samet [8]: used by all published works on parallel spatial indexing.

@ disadvantages:

e curse of dimensions: number of empty (or nearly empty) partitions
increasing fast with dimensions.
o hard to balance the processors’ work.

Quadtrees: a choice for parallel spatial indexing?

Parallel work balance?

LN

a L L 1l e 1L L&

wasted
space/work

L b c L

@ each node partitions a set of points by all d attributes, each
representing one dimension. partitions for the set in question

@ Samet [8]: used by all published works on parallel spatial indexing.

@ disadvantages:

e curse of dimensions: number of empty (or nearly empty) partitions
increasing fast with dimensions.
o hard to balance the processors’ work.

Quadtrees: a choice for parallel spatial indexing?

Parallel work balance?

LN

a L L 1l e 1L L&

L b f\i‘/ 7 comparisons to find ¢

@ each node partitions a set of points by all d attributes, each
representing one dimension. partitions for the set in question

wasted
space/work

@ Samet [8]: used by all published works on parallel spatial indexing.
@ disadvantages:

e curse of dimensions: number of empty (or nearly empty) partitions
increasing fast with dimensions.
o hard to balance the processors’ work.

Quadtrees: a choice for parallel spatial indexing?

Parallel work balance?

LN

a L L 1l e 1L L&

L b f\i‘/ 7 comparisons to find ¢

@ each node partitions a set of points by all d attributes, each
representing one dimension. partitions for the set in question

wasted
space/work

@ Samet [8]: used by all published works on parallel spatial indexing.
@ disadvantages:

e curse of dimensions: number of empty (or nearly empty) partitions
increasing fast with dimensions.
o hard to balance the processors’ work.

Raul H. C. Lopes Ivan D. Reid Peter R. Hobson K-d-trees on multi-core architectures

Bentley's K-d-trees

Bentley's K-d-trees

each node with degree 2,
showing a discriminator

Bentley's K-d-trees

each node with degree 2,
showing a discriminator

discriminators cy-
2 (v)
cled
/N
d 4{x) f v
a (y)

Bentley's K-d-trees

(x) each node with degree 2,
/X\ showing a discriminator
discriminators cy-
cled }/>\)
d 4{x) f v
a (y)

b ¢ «———— 6 comparisons to find c

Raul H. C. Lopes Ivan D. Reid Peter R. Hobson K-d-trees on multi-core architectures

K-d-trees: questions

o K-d-tree by Jon Bentley [2]
e Each nodes defines a discriminator (splitting dimension)
o Each discriminator has an associated cut value: the dimension value
of the points in the subset being partitioned
e discriminators cycle through the k dimension on the path from root
to leaf nodes

Raul H. C. Lopes Ivan D. Reid Peter R. Hobson K-d-trees on multi-core architectures

K-d-trees: questions

o K-d-tree by Jon Bentley [2]
e Each nodes defines a discriminator (splitting dimension)
o Each discriminator has an associated cut value: the dimension value
of the points in the subset being partitioned
e discriminators cycle through the k dimension on the path from root
to leaf nodes

@ Disadvantages

cycling through dimensions can still lead to leaf depth unbalancing
choice of cut value, a problem to be solved

o distribution of work on p > 1 processors scenario can be complicated
due to recursive nature

work balancing still a problem

Raul H. C. Lopes Ivan D. Reid Peter R. Hobson K-d-trees on multi-core architectures

Table of Contents

e Parallel k-d-trees

Raul H. C. Lopes Ivan D. Reid Peter R. Hobson K-d-trees on multi-core architectures

Fair split based K-d-trees (Callahan)

@ Splitting criteria
o each node defines a range of the space

o split close to the middle of the range
o split should guarantee either:

@ balanced distribution of points for children nodes
@ or total of comparisons on the order of the size of the node being split

o Fair split target balanced number of comparisons in sequential split

e O(nlog n) time for sequential algorithm
o split adapts Bentley's “burning the candle from both ends” algorithm

[1].

Raul H. C. Lopes Ivan D. Reid Peter R. Hobson K-d-trees on multi-core architectures

Fair split based K-d-trees (Callahan)

@ Splitting criteria
o each node defines a range of the space

o split close to the middle of the range
o split should guarantee either:

@ balanced distribution of points for children nodes
@ or total of comparisons on the order of the size of the node being split
o Fair split target balanced number of comparisons in sequential split
e O(nlog n) time for sequential algorithm
o split adapts Bentley's “burning the candle from both ends” algorithm
[1].
@ Problem for parallel algorithm
o split must “guess” (or brute force search) slabs of splitting

o Callahan does “hand waving argument” to show that it is possible
o Har-Peled [6] proposes splitting based on one of

o radix splitting
o k-enclosing disk splitting

Raul H. C. Lopes Ivan D. Reid Peter R. Hobson K-d-trees on multi-core architectures

Proposed solution

(y) «——— each internal node has degree 2

lon

¢ «——— 4 comparisons to find ¢

Proposed solution

(y) Qh internal node has degree 2

(x) ¢——— long queue

short queue (yy f

b ¢ «——— 4 comparisons to find ¢

Raul H. C. Lopes Ivan D. Reid Peter R. Hobson K-d-trees on multi-core architectures

Parallel K-d-tree build guarantees

@ Variation from Bentley's K-d-tree structure

o each node defines cutting discriminator
e discriminator chosen as largest dimension available for splitting
e cut value chosen by a median of medians algorithm

Raul H. C. Lopes Ivan D. Reid Peter R. Hobson K-d-trees on multi-core architectures

Parallel K-d-tree build guarantees

@ Variation from Bentley's K-d-tree structure
o each node defines cutting discriminator
e discriminator chosen as largest dimension available for splitting
e cut value chosen by a median of medians algorithm
@ Building algorithm
o median of medians algorithm uses O(n) work and scales for p
processors
o heuristic variation of medians algorithm guarantees O(n) (with small
constant) splitter located between % and %, giving logarithmic
height

Raul H. C. Lopes Ivan D. Reid Peter R. Hobson K-d-trees on multi-core architectures

Parallel K-d-tree build guarantees

@ Variation from Bentley's K-d-tree structure

o each node defines cutting discriminator
e discriminator chosen as largest dimension available for splitting
e cut value chosen by a median of medians algorithm
@ Building algorithm
o median of medians algorithm uses O(n) work and scales for p
processors
o heuristic variation of medians algorithm guarantees O(n) (with small
constant) splitter located between % and %, giving logarithmic
height

@ asynchronously parallel algorithm: full use of all processors as they
become available.

Raul H. C. Lopes Ivan D. Reid Peter R. Hobson K-d-trees on multi-core architectures

Splitting for balanced k-d-tree

@ Split close to the median.

Based on Blum, Floyd, Pratt, Tarjan algorithm of kth-selection
Parallel map blocks of 5 elements to its median

Recursion until block of up to 5 central elements is found.
Easy elimination of recursion.

Guaranteed time in O(n).

Median of final blocks always greater than % and less than 1—8
elements of initial set.

o Additional element from final block used for a two pivots split.

@ Option for split at the middle of the range based on A. Moore [7].

Raul H. C. Lopes Ivan D. Reid Peter R. Hobson K-d-trees on multi-core architectures

Parallel k-d-tree algorithm

@ Sets of nodes to split are kept in two queues.

Raul H. C. Lopes Ivan D. Reid Peter R. Hobson K-d-trees on multi-core architectures

Parallel k-d-tree algorithm

@ Sets of nodes to split are kept in two queues.
@ Long queue split:
o all processors all applied to split one node
o split in three steps
o parallel search for dimension to split
o parallel search for splitters using median of 5
o parallel split adapting Bentley's invariant for one pivot to a two pivot
split.
e each split node will always produce two or three children.
o at least two nodes resulting from one split will have a minimum of %
points each. O(log n) height guaranteed.

Raul H. C. Lopes Ivan D. Reid Peter R. Hobson K-d-trees on multi-core architectures

Parallel k-d-tree algorithm

@ Sets of nodes to split are kept in two queues.
@ Long queue split:
o all processors all applied to split one node
o split in three steps
o parallel search for dimension to split
o parallel search for splitters using median of 5
o parallel split adapting Bentley's invariant for one pivot to a two pivot
split.
e each split node will always produce two or three children.
o at least two nodes resulting from one split will have a minimum of %
points each. O(log n) height guaranteed.

@ Short queue split:

o Each process available takes one node to split with same algorithm
as long queue.

Raul H. C. Lopes Ivan D. Reid Peter R. Hobson K-d-trees on multi-core architectures

Performance

@ Based on gcc (-fopenmp) 4.6, Ubuntu 13.04, Intel xeon 5660.

@ Sets with up to 2% points processed asynchronously with one
processor.

@ Speed-up and efficiency shown in the table only for the 1572864 set.

points in 3-d | 1 proc | 4 procs | 8 procs | 12 procs
65536 | 0.856s | 0.868s | 0.857s 0.854s
252144 | 3.206s | 1.337s | 1.235s 1.391s
524288 | 6.551s | 2.545s | 1.338s 1.512s
786432 | 9.724s | 3.991s | 2.781s 1.862s
1572864 | 18.43s | 7.515s | 4.532s 3.623s

S 1| 245| 414 5.08
E, 1 0.61 0.51 0.42
_ T
@ Speed-up S1» = +#

o Efficiency Ej» = %

Raul H. C. Lopes Ivan D. Reid Peter R. Hobson K-d-trees on multi-core architectures

Table of Contents

@ What could go wrong?

Raul H. C. Lopes Ivan D. Reid Peter R. Hobson K-d-trees on multi-core architectures

What could possibly go wrong?

@ Too many comparisons: what if median search is too expensive and
cut by the middle is good enough in practice?

Raul H. C. Lopes Ivan D. Reid Peter R. Hobson K-d-trees on multi-core architectures

What could possibly go wrong?

@ Too many comparisons: what if median search is too expensive and
cut by the middle is good enough in practice?

o Cut by the middle of the largest range is available.
o (Extensive) Testing needed.

Raul H. C. Lopes Ivan D. Reid Peter R. Hobson K-d-trees on multi-core architectures

What could possibly go wrong?

@ Too many comparisons: what if median search is too expensive and
cut by the middle is good enough in practice?
o Cut by the middle of the largest range is available.
o (Extensive) Testing needed.
@ Long queue move done in two steps that should be improved by
fusion: local three-way split based on Bentley followed by pack
pattern.

Raul H. C. Lopes Ivan D. Reid Peter R. Hobson K-d-trees on multi-core architectures

What could possibly go wrong?

@ Too many comparisons: what if median search is too expensive and
cut by the middle is good enough in practice?

o Cut by the middle of the largest range is available.
o (Extensive) Testing needed.

@ Long queue move done in two steps that should be improved by
fusion: local three-way split based on Bentley followed by pack
pattern.

o Can we fuse the two steps into a categorization pattern?
o Careful! Categorization pattern can be very costly!

Raul H. C. Lopes Ivan D. Reid Peter R. Hobson K-d-trees on multi-core architectures

What could possibly go wrong?

@ Too many comparisons: what if median search is too expensive and
cut by the middle is good enough in practice?

o Cut by the middle of the largest range is available.
o (Extensive) Testing needed.

@ Long queue move done in two steps that should be improved by
fusion: local three-way split based on Bentley followed by pack
pattern.

o Can we fuse the two steps into a categorization pattern?
o Careful! Categorization pattern can be very costly!

@ Is WSPDP too heavy?

Raul H. C. Lopes Ivan D. Reid Peter R. Hobson K-d-trees on multi-core architectures

What could possibly go wrong?

@ Too many comparisons: what if median search is too expensive and
cut by the middle is good enough in practice?

o Cut by the middle of the largest range is available.
o (Extensive) Testing needed.

@ Long queue move done in two steps that should be improved by
fusion: local three-way split based on Bentley followed by pack
pattern.

o Can we fuse the two steps into a categorization pattern?
o Careful! Categorization pattern can be very costly!
@ Is WSPDP too heavy?

e Yes, when number of dimensions increase [6].
o Sequential approximation algorithm available. Parallel?

Raul H. C. Lopes Ivan D. Reid Peter R. Hobson K-d-trees on multi-core architectures

Wrong with parallel model?

o Parallelism too irregular.

Raul H. C. Lopes Ivan D. Reid Peter R. Hobson K-d-trees on multi-core architectures

Wrong with parallel model?

o Parallelism too irregular.
o Algorithm described unsuitable for strict SIMD of most GPUs.

Raul H. C. Lopes Ivan D. Reid Peter R. Hobson K-d-trees on multi-core architectures

Wrong with parallel model?

o Parallelism too irregular.

o Algorithm described unsuitable for strict SIMD of most GPUs.

e Scan model of computing and Blelloch’s radix sort pattern [3] to
help.

o Local SIMD available, but so far not exploited: widest range search,
median computation, local three-way split.

Raul H. C. Lopes Ivan D. Reid Peter R. Hobson K-d-trees on multi-core architectures

Wrong with parallel model?

o Parallelism too irregular.
o Algorithm described unsuitable for strict SIMD of most GPUs.
e Scan model of computing and Blelloch’s radix sort pattern [3] to
help.
o Local SIMD available, but so far not exploited: widest range search,
median computation, local three-way split.

@ Parallel processing in the long queue not decoupled enough for
distributed memory will demand (maybe too many) data
movements.

Raul H. C. Lopes Ivan D. Reid Peter R. Hobson K-d-trees on multi-core architectures

Wrong with parallel model?

o Parallelism too irregular.
o Algorithm described unsuitable for strict SIMD of most GPUs.
e Scan model of computing and Blelloch’s radix sort pattern [3] to
help.
o Local SIMD available, but so far not exploited: widest range search,
median computation, local three-way split.

@ Parallel processing in the long queue not decoupled enough for
distributed memory will demand (maybe too many) data
movements.

o Extensive testing/tuning for algorithm with an initial phase of
sampling to distribute points when running on cluster.

o MIC computation could be more feasible due to lower
communication costs.

Raul H. C. Lopes Ivan D. Reid Peter R. Hobson K-d-trees on multi-core architectures

Conclusion

@ The simple structure of k-d-trees offers promissing alternatives
regarding:
o Restricting the height of resulting trees.
o balancing of work load in parallel implementation.
@ Challenges that need to be worked:
o Irregular parallelism of present algorithm not the best regular SIMD
as found in GPUs.
e Improving memory management in parallel execution might result in
huge gains in computing time and efficiency.
o Scheduling of synchronised steps affects time and efficiency.

Raul H. C. Lopes Ivan D. Reid Peter R. Hobson K-d-trees on multi-core architectures

References |

[Jon Bentley.
Programming Pearls.
Addison Wesley, 1999.

[Jon L. Bentley.
Multidimensional binary search trees used for associative searching.
Communications of ACM, 1975.

El Guy E. Blelloch.
Preffix sums and their applications.
Technical Report CMU-CS-90-190, School of Computer Science —
Carnegie Mellon University, 1990.

[§ Paul B. Callahan.
Dealing with Higher Dimensions: The Well-Separated Pair
Decomposition and Its Applications.
PhD thesis, John Hopkins University, 1995.

Raul H. C. Lopes Ivan D. Reid Peter R. Hobson K-d-trees on multi-core architectures

References |l

@ Andrew William Moore et al.
Fast algorithms and efficient statistics: N-point correlation functions.

In Proceedings of MPA/MPE/ESO Conference Mining the Sky,
2000.

[@ Sariel Har-Peled.
Geometric Approximation Algorithms.
American Mathematical Society, 2011.

@ Andrew William Moore.
Efficient memory-based learning for robot control.
Technical Report UCAM-CL-TR-209, University of Cambridge, 1990.

@ Hanan Samet.
Foundations of Multidimensional and Metric Data Structures.
Morgan Kaufman, 2006.

Raul H. C. Lopes Ivan D. Reid Peter R. Hobson K-d-trees on multi-core architectures

