The Effect of Flashcache and
Bcache on I/O Performance

Christopher Hollowell <hollowec@bnl.gov>
RHIC/ATLAS Computing Facility
Brookhaven National Laboratory

Co-authors: Jason Smith, Richard Hogue, Alexandr Zaytsev,
William Strecker-Kellogg, Tony Wong

October 15, 2013



mailto:hollowec@bnl.gov

Ve e —— —
Introduction

Intel server processor logical core counts:

x86 64 server CPU core counts are continuing to increase ‘

Near Future lvy Bridge 24 (30 rumored with vy Bridge-EX)

Typical HEP/NP model: 1 batch job slot per logical core
More jobs per system have lead to a growing demand for local
scratch and remote storage random 1I/O performance
Primarily interested in scratch storage performance for this study
Solid state drives (SSDs) provide excellent random I/O performance
when compared to traditional rotating drives
Also very expensive when compared to traditional SATA/SAS drives
1 TB SSDs typically retail near $1,000 USD
Can be over $2,500 for enterprise drives from server
vendors
Enterprise drives needed in high write volume environments
1 TB SATA drives typically retail under $100

——— i

2




Introduction (Cont.)

Increasing spindle count helps with random I/O:
Large software RAIDO arrays have excellent random 1/O performance
characteristics, and are well suited for local scratch use
Need to buy many traditional drives, which can also be fairly
costly

Hybrid SSD drives?
SSD/flash memory cache in front of traditional rotating media
Commaodity hardware hybrid drives available from Seagate for
reasonable prices
Unfortunately, not currently sold or supported by large server
vendors such as Dell
Software defined hybrid SSD devices for Linux
Flashcache
Bcache



Flashcache

Linux kernel module which provides software devices with block caching
on SSDs or other fast storage. Cache structure is a set associative hash

Uses Linux Device Mapper (DM) layer
Devices appear as /dev/imapper/ CACHENAME

Developed by Facebook in 2010

Not integrated into the upstream kernel source: need to compile separately
ELRepo offers packages for SL/RHELG6

Haven't tried these
Built stable version 2.0 from source for our tests (2.1 recently out)
Builds against the SL/RHEL6 X86 64 2.6.32-358.6.2.el6 kernel

without any issues

Supports writethrough, writearound and writeback caching
FIFO and LRU cache replacement policies supported

Many tunables via sysctl interface



Building/Configuring Flashcache

Get the source
Release 2.1 now available:
https://github.com/facebook/flashcache/releases/tag/2.1
2.X wasn't available as a tarball when we started our tests, so we

manually created one:
$ git clone https://github.conlfacebook/fl ashcache. git

$ cd flashcache
$ git archive -o /tnp/fc2.tar.gz stable v2 .

Install the SL/RHELG6 kernel-devel package

Build the flashcache kernel module and utilities against the kernel-devel

headers:
$ tar -xzvf fc2.tar.gz

$ cd flashcache
$ make KERNEL_ TREE=/usr/src/ kernel s/ 2.6.32-358.6.2.¢el 6. x86 64

$ cd src


https://github.com/facebook/flashcache/releases/tag/2.1
https://github.com/facebook/flashcache.git

Building/Configuring Flashcache (Cont.)

Insert the kernel module:
# 1nsnod ./ fl ashcache. ko

Create and format the flashcache device (using sdbl [SSD] and sda8):
# ./utils/flashcache create -p back fcl /dev/sdbl /dev/sda8

If the Flashcache device already existed, one would instead issue:

# ./utils/flashcache | oad /dev/sdbl
# nkfs.ext4 /dev/ mapper/fcl

Check/modify systctl parameters (we used defaults):
# sysctl -a | grep flashcache

aév.flashcache.sdb1+sda8.reclaianoIicy =0
dev. fl ashcache. sdbl+sda8. fal | ow del ay = 900
dev. fl ashcache. sdbl+sda8. ski p_seq thresh kb =0



Bcache

Another Linux kernel module which provides software devices with block
caching on SSDs or other fast storage. Utilizes a btree cache structure

Created devices appear as /dev/bcacheX

Packages not available for SL/RHELG in standard repositories (SL, EPEL,
ELRepo, etc.)

Integrated as stable software into the upstream vanilla kernel starting
in 3.10

Integrated source cannot be easily extracted and compiled against the
SL/RHELG6 kernel source

Therefore, all testing performed with vanilla 3.11.1 kernel

Also provides writethrough, writearound and writeback caching
Supports FIFO, LRU, and random cache replacement policies

Configuration via a sysfs (/sys) interface: many options available



Building/Configuring Bcache

Copy SL/RHELG6 kernel SRPM X86 64 config to .config in a vanilla kernel

3.11.1 tree, run make olddefconfig, and build/install (See “Backup Slide”
for more information)

Edit /boot/grub/grub.conf to make 3.11.1 the default kernel and reboot

Load the module:
# nodprobe bcache

Obtain and build bcache-tools source:

$ git clone http://evilpiepirate.org/git/bcache-tools.git
$ cd bcache-tools
$ make


http://evilpiepirate.org/git/bcache-tools.git

Building/Configuring Bcache (Cont.)

Create bcache device (using sdbl [SSD] and sda8):

#
#
#
#
#

#

./ make- bcache -B /dev/sda8

./ make- bcache -C /dev/sdbl

echo /dev/sdbl > /sys/fs/bcache/register

echo /dev/sda8 > /sys/fs/bcache/register

cd /sys/ bl ock/ bcacheO/ bcache

echo CACHESET UU D FROM MAKE- BCACHE CMD > attach

On reboot, it is only necessary to run the above echo commands to
reassemble the device. Udev rules are also available which make
manual registration unnecessary for assembly of pre-existing devices

Change default parameters and format the bcache device:

#
#
#
#

cd /sys/ bl ock/ bcacheO/ bcache
echo witeback > cache_node
echo 0 > sequential cutoff
nkfs.ext4 /dev/bcacheO



Evaluation Hardware/Configuration
Single SATA hard drive, SSD, Flashcache, and Bcache benchmarks
Dell PowerEdge R410
2 6-core Xeon X5660@2.80 GHz CPUs (HT on: 24 logical cores total)
48 GB DDR3 1333 MHz RAM
SAS 6/IR disk controller
64-bit Scientific Linux 6.4 (kernel 2.6.32-358.6.2.el6.x86 64, 3.11.1 for
bcache)
1. Hard drive used during single SATA, Flashcache and Bcache
benchmarks:
Seagate ST32000644NS 3.5” drive
2 TB, SATA 3.0 Gbps
64 MB cache
7200 RPM
Firmware release KAO6
2. SSD drive used during single SSD, Flashcache and Bcache
benchmarks:
Dell MZ-5EA2000-0D3 (Samsung SM825) 2.5” Enterprise SSD
200 GB, SATA 3.0 Gbps, eMLC
Firmware release 7D3Q
Kernel 1/O scheduler set to “deadline” for all tests

10


mailto:X5660@2.80

Evaluation Hardware/Configuration (Cont.)

Flashcache Configuration
Used defaults:

Writeback cache (set at device creation time)
Clean idle dirty blocks after 15 minutes without use. Inconsistent

benchmark results with this parameter set to 0 (no idle cleaning)
fallow_delay = 900

FIFO cache reclaim policy — default
reclaim_policy =0
Disable sequential cutoff
skip_seq_thresh kb =0
Bcache Configuration
Used defaults, with a few exceptions:
Writeback caching enabled (writethrough the default)
cache _mode = “writeback”
Seqguential cutoff disabled
sequential_cutoff = 0 (4 MB the default)
LRU cache reclaim policy — default
cache_replacement_policy = “Iru”
Default initial writeback delay of 30 seconds — somewhat different
meaning than Flashcache's fallow delay parameter

11



Evaluation Hardware/Configuration (Cont.)
Software RAIDO, Flashcache and Bcache Benchmarks
Dell PowerEdge R620
2 8-core Xeon E5-2660@2.20 GHz CPUs (HT on: 32 logical cores total)
48 GB DDR3 1600 MHz RAM
PERC H310 disk controller
64-bit Scientific Linux 6.4 (kernel 2.6.32-358.6.2.el6.x86 64, 3.11.1
for Bcache tests)
8 2.5" SATA hard drives in a software RAIDO configuration
Only 7 spindles used in the array for Flashcache and Bcache tests
Seagate ST9500620NS 2.5” drive
500 GB, SATA 3.0 Gbps
64 MB cache
7200 RPM
Firmware release AAQ9

SSD TRIM (“discard” mount option) not enabled. EXT4 used in all tests
Tested both “clean” and “dirty” Flashcache and Bcache configurations

Clean - no data written besides filesystem metadata before benchmark
Dirty — benchmark run multiple times in succession before final test

12



(Evaluation Hardware/Configuration (Cont.)

Single SSD cache in front of a single SATA drive, as used in both the
Flashcache and Bcache evaluation configurations

Userland interface:
/dev/imapper/fcl (Flashcache)
/dev/bcacheO (Bcache)

Writeback

Flashcache Architecture — Single Disk

Nm— eSS e ——

13



(Evaluation Hardware/Configuration (Cont.)

Single SSD cache in front of a 7 SATA drive software RAIDO (md) array,
as used in both the Flashcache and Bcache evaluation configurations

Writeback

Userland interface:

/dev/imapper/fcl (Flashcache)

/dev/bcacheO (Bcache)

14



Benchmarks

lozone
Ran version 3.420, with variable record sizes
Runs a number of I/O tests, including both random and sequential
Supports single-threaded, or multi-threaded (throughput) modes
Only the single-threaded test (automatic mode) was run in this study

bonnie++
Ran version 1.03e, with 8k and single byte/character record sizes

Supports single-process, or synchronized multi-process execution
Input/output tests are sequential

Using multiple processes, one can effectively create a random
workload

Multiple processes performing sequential 1/O is likely a good
model for real world scratch access patterns on HEP/NP worker
nodes

Aggregated parallel results

Importantly, test filesize was set larger than memory size in all benchmarks

15



lozone performance (64 GB filesize) - SW RAIDO [8 spindles]

600000 - : : T T T T —
— Random_read ———
500000 |- .
a d O e ad ,/{’)
,/
o
400000 | / g
g . Pl
o 300000 | Vi -
* 7
lozone performance (64 GB filesize) - SSD /
220000 - - . T T T \ . /
Random_read ——— 200000 | i 7
210000 / Tt &
;/ 100000 | / .
200000 [/ s /
/ ""‘I
190000 |/ E ;
‘ 0 1 1 | 1 1 1 1 |
0 2000 4000 6000 8000 10000 12000 14000 16000 18000
180000 -| E Record size in KB
0
o \
¥
170000 j :
lozone performance (64 GB filesize) - SATA
\ 160000 . . . . . . : .
160000 —| E Random_read ——
I 140000 | —_— -
150000 :
| //'/--
140000 - . 156A00 - /,,/ g
f
130000 L L ! L L L ! | 100000 | v 1
0 2000 4000 6000 8000 10000 12000 14000 16000 18000 '
Record size in KB Eg 80000 | |
< /
."
I}
60000 - | g
I‘I
40000 |H .
|
c‘
20000 | 2
0 1 1 1 1 1 1 1 1
0 2000 4000 6000 8000 10000 12000 14000 16000 18000
Record size in KB
\__ — I — —



18000

lozone (1 Thread) — Random Read (Cont.)

18000

lozone performance (64 GB filesize) - FlashCache
100000 T T T T T T T
AT Random_read ———
,’// o = S
90000 |- P g N
80000 |- - - —
G
I
70000 | / .
so000 F /

2 I

i}

4
50000 |- |

|

|

/
40000 | |
30000 |

20000 | .
10000 1 1 1 1 1 1
0 2000 4000 6000 8000 10000 12000 14000 16000
Record size in KB

Dirty cache in both test cases

lozone performance (64 GB filesize) - Bcache
220000 T T T T T Rarlndo adl
SRR ———. m_re =
210000 - ]
///
200000 | i g
190000 |- /////// 8
180000 —"‘I‘ 4

@ |

@ 170000 |

4

|
160000
|
150000 T
140000 T s
I 130000 T .
120000 1 1 1 1 1 1 |
0 2000 4000 6000 8000 10000 12000 14000 16000
Record size in KB
ma— e e —

17



lozone (1 Thread) — Random Read (Cont.)

lozone performance (64 GB filesize) - Bcache with SW RAIDO [7 spindles] lozone performance (64 GB filesize) - Flashcache with SW RAIDO [7 spindles]
500000 T T T T T T T T 60000 T T T T T T T T
Random_read— Random_read ——
450000 |- P - g
ol 55000 |- i .
400000 |- - - IR
ol TR
350000 | S § sooeaE P T
- o~ =3 "‘l‘\ //
i) / \i M
300000 Vi 4 /
£ 45000 -/ -
Ry ,/ Ry
@ 250000 - @ \
¥ / 4
// 40000 [ i
200000 | of .
&
E |
//
150000 / & 35000 ﬁ 7
100000 | / . |
30000 f .
50000 H B [
‘ \
|
0 1 1 | 1 1 1 1 | 25000 1 | 1 1 1 1 1 1
0 2000 4000 6000 8000 10000 12000 14000 16000 18000 0 2000 4000 6000 8000 10000 12000 14000 16000 18000
Record size in KB Record size in KB

Dirty cache in both test cases

18




ozone (1 Thread) -
Random Write

lozone -a -g 120G

lozone performance (64 GB filesize) - SSD
266000 T T T T T T

T T
Random_write

265000 R i .

264000
263000 [
262000 |

261000

KB/s

260000 [+

259000

258000

257000

256000

255000 1 L L 1 1 1 1 1
0 2000 4000 6000 8000 10000 12000 14000 16000 18000

Record size in KB

KB/s

KB/s

lozone performance (64 GB filesize) - SW RAIDO [8 spindles]

600000
550000 |- |
500000 |
450000 H

|
400000 1

|
350000 T

300000

T T P ey T T T T
L Random_write

250000

2000

4000 6000 8000 10000 12000 14000 16000 18000
Record size in KB

lozone performance (64 GB filesize) - SATA

110000

100000

90000
80000 - |
70000 [
60000

H
|
|

50000 T

40000 |—

T T
Random_write

30000
0

2000

4000 6000 8000 10000 12000 14000 16000 18000
Record size in KB

— e e

19



lozone (1 Thread) — Random Write (Cont.)

KB/s

lozone performance (64 GB filesize) - FlashCache

lozone performance (64 GB filesize) - Bcache
145000 T T T T T T 260000 T T T T T T T T
Random_write Random_write
140000 |- //*_*“ % f\\
e 250000 | | i S .
r S / X ,/ i,
135000 | s L = | . ////’
f i N [ \
/ - 240000 | | % -
130000 | | ' \ /////
[ | 7
125000 | | 230000 - T
| "
| Q
| ¥
120000 |-/ - Stz lod |
! |
|
115000 H .
J 210000 | -
110000 4 :
l 200000 {4 4
105000 . f
100000 1 1 1 1 1 1 1 190000 1 1 1 1 1 1 1
0 2000 4000 6000 8000 10000 12000 14000 16000 18000 ] 2000 4000 6000 8000 10000 12000 14000 16000 18000
Record size in KB Record size in KB
— —— e — —

20



lozone (1 Thread) — Random Write (Cont.)

18000

lozone performance (64 GB filesize) - Bcache with SW RAIDO [7 spindles] lozone performance (64 GB filesize) - Flashcache with SW RAIDO [7 spindles]
550000 T T T T T T =1 280000 T T T T T T T il
Random_write Random_write
/’/’ o
500000 e . Sariaa | e |
:,—--"'/{ = 5 /.«'/ it
450000 |/ - Py
240000
400000 |- | .
.I 220000 |
(] w
@ 350000 |- i o /
™4 | 4
| 200000  /
300000 H g {
‘ )
| 180000 - | .
250000 R |
| |
|
I S | 160000 1 .
|
150000 1 1 1 1 1 1 | | 140000 1 1 1 1 1 1
0 2000 4000 6000 8000 10000 12000 14000 16000 18000 0 2000 4000 6000 8000 10000 12000 14000 16000
Record size in KB Record size in KB
\__ — I — —

21



VS

900
800
700
600
MB/s
500
400
300

200

10

o

0

Sequential bonnie++ (1 Process)

bonnie++ without options (96 GB filesize)

B Block Write
M Block Read
B Character Write
[ Character Read

ehhhiblbn

Flashcache(Clean) FC RAIDO(Clean) Bcache(Clean) BC RAIDO(Clean)
SATA Disk SW RAIDO Flashcache(Dirty) FC RAIDO(Dirty) Bcache(Dirty) BC RAIDO(Dirty)

22



- Parallel/Random bonnie++

Multiprocess (24) sequential, synchronized, aggregate: bonnie++ -y -r 2560 -s 5120 (122 GB total)
- Effectively creates a random workload

800

700

600

500
MB/s
M Block Write
400 M Block Read
B Character Write
[ Character Read
0
20
0

Flashcache(Clean) FC RAIDO(Clean) Bcache(Clean) BC RAIDO(Clean)
SATA Disk SW RAIDO Flashcache(Dirty) FC RAIDO(Dirty) Bcache(Dirty) BC RAIDO(Dirty)

o

o

o

23




Conclusions

The single SSD tested provided excellent random I/O characteristics,
particularly for small record sizes, but did not provide the performance of a
multi-spindle software RAIDO configuration for larger record sizes

The software RAIDO configuration provided roughly double the

random 1I/O performance compared to the SSD for large records and

for parallel workloads

But it consisted of 8 times the number of drives
Single SSD random 1I/O performance was significantly better than a
single SATA drive

Flashcache and Bcache with an SSD cache generally augmented the 1/O
performance of a single SATA disk for files that fit within the cache
Generally true for both random and sequential 1/0O
Smaller gains, or performance losses, were typically seen when the
cache was preloaded with dirty data during bonnie++ testing
Probably not suitable for scratch space utilization, since in this use
case we're likely dealing with large files that are only written and/or
read once
Would likely benefit database, webserver, or other applications where

a set of relatively small files are repeatedly read/written
24



Conclusions (Cont.)

In the single SATA disk configurations tested, Flashcache typically yielded
better random write performance, while Bcache typically yielded better
random read performance

Fronting a 7-spindle software RAIDO array with a single SSD cache via

Flashcache or Bcache, instead of using an 8-spindle standard RAIDO array

(without SSD cache), generally reduced the performance of the array
Bcache/Flashcache may improve the performance of RAID5/6 arrays —
we did not test this setup since we were primarily interested in scratch
storage performance

As mentioned, there are a large number of Bcache, Flashcache, kernel and
filesystem configuration parameters (as well as many alternative filesystem
types). There are so many tunables/variables, that testing variations on
each was impossible due to time constraints. However, if the application
data access pattern is well known, it is possible that improved Flashcache
and Bcache performance can be obtained through additional modification of
these parameters

25



Questions?

26



Backup Slide

Building a test 3.11.1 kernel from the SL/RHEL6 x86 64 2.6.32 kernel
configuration:
$ rpm-ivh kernel-2.6.32-358.6.2.el6.src.rpm

$
$

&6 h &H

H H H HP

rpnbui Il d -bp rpnbuil d/ SPECS/ ker nel . spec
cp rpnbui |l d/ BU LD ker nel - 2. 6. 32-358. 6. 2. el 6/

| 1 nux-2. 6. 32-358. 6. 2. el 6. x86_64/confi gs/ kernel -
2.6.32-x86_64.config linux-3.11.1/.config
cd linux-3.11.1

make ol ddefconfi g

make nenuconfi g

Sel ect “Device Drivers” -> “Miltiple devices driver
support (RAID and LVM”

Sel ect “Bl ock device as cache” as a nodul e “<M”
make
cp arch/ x86_64/boot/ bzl mage /boot/vm inuz-3.11.1
make nodul es i nstall
depnod -a 3.11.1

nkinitrd /boot/initranfs-3.11.1.ing 3.11.1

27



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27

