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Framework Integration

Tracking algorithms

Technology: compilers and tools

Coprocessor features:
● Intel Xeon Phi 5110P (B1 stepping)
● 60 x86 cores @ 1.05GHz

● 4 hardware threads / core
● 8GB of RAM
● 512bit vector and masking registers
● 210GB/s effective memory bandwidth

Host features:
● Intel Xeon, E5-2603

● 2 hyper threads / core
● 4 x86 cores @ 1.80GHz
● 32GB of RAM
● 256bit vector registers
● 34GB/s max memory bandwidth 

Future

Next generation Many Integrated Core cards: Knights Landing (*)

● Both standalone and as coprocessor
● Support for AVX-512 (efficiently compatible with AVX and SSE)
● 14nm process, 2nd generation 3-D tri-gate
● Increased memory and memory bandwidth

 
* Source: http://newsroom.intel.com/community/intel_newsroom/blog/2013/06/17
                                                     /intel-powers-the-worlds-fastest-supercomputer-reveals-new-and-future-high-performance-computing-technologies

MIC as a standalone CPU, i.e. directly on motherboard, would:
● Allow extension of memory banks?
● Remove programming complexities of data transfers

To be continued …

Currently available tools are disappointing ...
● Auto-vectorization is unpredictable and therefore unmaintainable
● Forced vectorization of aligned memory works, but is also hard to maintain
● Overall performance relatively weak outside specific use cases
● No support for automatic work/task sharing
Lots of choices, most tools are from Intel … which will be around long-term?

Object Orientation considered harmful

The Promise: O(1012) ops/s in-a-box

host processor

main memory
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Virtual method calls into shared libraries 
prevent hardware optimizations: MIC 
wins given enough parallelism, because 
of bandwidth advantage. It scales super 
linearly with # calls. However, absolute 
performance for both is very low.

Motivation

Run 2014: high
multiplicities

Threads and vectorization
● 240+ threads per card
● 8-way vectorization for doubles
● But: bundled issue, no back-to-back

● 2x #cores threads to saturate
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Flat computing
 budgets

coprocessor (MIC)

Our codes are different

(host: 4 and 8
calls overlap)

HEP: common matrices
mismatch CPU vectors
  

HPC: 1000s x 1000s 
elements → only small 
overhead in padding

VPU: 8x1

AVX: 4x1

HEP: 5x5

Candidates for offloading:
● Track finding in Pixel and SCT detectors: combinatorics allow parallelization
● Ambiguity processing after seed finding, new algorithm: Multi Track Fitter (MTF)

● Hits assigned to tracks with probability weights, rather than exclusively
● All tracks updated in parallel for each iteration

Engineering constraints:
● Access to geometry, material properties, and magnetic field
● Differences in lengths of individual tracks and dimensions of measurements  

yes

Design for GaudiHive:
● Simple offload models block on host
● TBB tasks allow effective work 

balancing in “whole node” operation
● Control task scheduling through 

thread pool and task sizes

Engineering constraints:
● Offload data needs to be streamable

● Allows conversion on-the-fly
● Control process for MIC access

● Schedule resource allocation
● Manage buffers for data transfers
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Technology Effective? Xeon Phi support?

Intel C/C++ Compiler (ICC) ★★ ★★★★

GNU Compiler Collection (GCC) ★★ ★★★

SIMD/Cilk Plus ★★★ ★★★★

Threading Building Blocks ★★★★ ★★★

Intel SPMD Program Compiler (ISPC) ★★★★ ★

OpenMP (with ICC) ★★★ ★★★★

OpenCL ★★ ★★★

Multi Track Fitter
Graphics Processor Unit Many Integrated Core

Effective contention control
Needs independent 

parallelization

Load a (simplified, due to limited memory) geometry and 
material description onto the card. Or, select a slice with 
a reference track on the host and only load the selection.

Add “zero-measurements” to equalize track sizes.

Measurements zero-padded for vectorization, but larger 
matrices result in more compute-intensive inversions.

Computations per 
double variable?

Predictable
workloads?

< 20 > 20

Single process 
card ownership? no

no
yes

The offload model is 
easiest to program

Task scheduling and 
coprocessor sharing 
requires a service 
programming model

The service model 
makes available all 
compute resources 
even when inefficient

Requires new 
solutions

Host and MIC,
offload model

Host and MIC,
service model

Bandwidth limited:
prefer host
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