
Experience with Intel's Many Integrated
Core (MIC / Xeon Phi) in ATLAS Software

Fleischmann S., Kama S., Lavrijsen W., Neumann M., and Vitillo R. for the ATLAS Collaboration

The Xeon Phi (Many Integrated Core or MIC) coprocessor

Computing in High Energy Physics 2013

Framework Integration

Tracking algorithms

Technology: compilers and tools

Coprocessor features:
● Intel Xeon Phi 5110P (B1 stepping)
● 60 x86 cores @ 1.05GHz

● 4 hardware threads / core
● 8GB of RAM
● 512bit vector and masking registers
● 210GB/s effective memory bandwidth

Host features:
● Intel Xeon, E5-2603

● 2 hyper threads / core
● 4 x86 cores @ 1.80GHz
● 32GB of RAM
● 256bit vector registers
● 34GB/s max memory bandwidth

Future

Next generation Many Integrated Core cards: Knights Landing (*)

● Both standalone and as coprocessor
● Support for AVX-512 (efficiently compatible with AVX and SSE)
● 14nm process, 2nd generation 3-D tri-gate
● Increased memory and memory bandwidth

* Source: http://newsroom.intel.com/community/intel_newsroom/blog/2013/06/17
 /intel-powers-the-worlds-fastest-supercomputer-reveals-new-and-future-high-performance-computing-technologies

MIC as a standalone CPU, i.e. directly on motherboard, would:
● Allow extension of memory banks?
● Remove programming complexities of data transfers

To be continued …

Currently available tools are disappointing ...
● Auto-vectorization is unpredictable and therefore unmaintainable
● Forced vectorization of aligned memory works, but is also hard to maintain
● Overall performance relatively weak outside specific use cases
● No support for automatic work/task sharing
Lots of choices, most tools are from Intel … which will be around long-term?

Object Orientation considered harmful

The Promise: O(1012) ops/s in-a-box

host processor

main memory

0 12 24 36 48 60 72 84 96 108 120

0

100

200

300

400

500

600

MIC MIC no-v ec i7-3970 i7-3970 no-v ec

no. of threads

T
h

e
o

re
tic

a
l G

F
L

O
P

s
 (

d
o

u
b

le
, n

o
 F

M
A

)

0 6 12

0

50

100

Virtual method calls into shared libraries
prevent hardware optimizations: MIC
wins given enough parallelism, because
of bandwidth advantage. It scales super
linearly with # calls. However, absolute
performance for both is very low.

Motivation

Run 2014: high
multiplicities

Threads and vectorization
● 240+ threads per card
● 8-way vectorization for doubles
● But: bundled issue, no back-to-back

● 2x #cores threads to saturate

1 25 50 75 100

0

0.5

1

1.5

2

2.5

3

3.5

4

MIC - 1 call MIC - 4 calls MIC - 8 calls
Host - 1 call Host - 4 calls Host - 8 calls

cores utilized (%)

G
F

L
O

P
s

 (
d

o
u

b
le

, n
o

 F
M

A
)

Flat computing
 budgets

coprocessor (MIC)

Our codes are different

(host: 4 and 8
calls overlap)

HEP: common matrices
mismatch CPU vectors

HPC: 1000s x 1000s
elements → only small
overhead in padding

VPU: 8x1

AVX: 4x1

HEP: 5x5

Candidates for offloading:
● Track finding in Pixel and SCT detectors: combinatorics allow parallelization
● Ambiguity processing after seed finding, new algorithm: Multi Track Fitter (MTF)

● Hits assigned to tracks with probability weights, rather than exclusively
● All tracks updated in parallel for each iteration

Engineering constraints:
● Access to geometry, material properties, and magnetic field
● Differences in lengths of individual tracks and dimensions of measurements

yes

Design for GaudiHive:
● Simple offload models block on host
● TBB tasks allow effective work

balancing in “whole node” operation
● Control task scheduling through

thread pool and task sizes

Engineering constraints:
● Offload data needs to be streamable

● Allows conversion on-the-fly
● Control process for MIC access

● Schedule resource allocation
● Manage buffers for data transfers

0.13 0.25 0.5 1 2 4 8 16 32 64 128

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

async 2MB pages buffer reuse

data size (MB, log scale)

M
IC

 to
 H

o
s

t t
ra

n
s

fe
r

tim
e

 (
s

)

Technology Effective? Xeon Phi support?

Intel C/C++ Compiler (ICC) ★★ ★★★★

GNU Compiler Collection (GCC) ★★ ★★★

SIMD/Cilk Plus ★★★ ★★★★

Threading Building Blocks ★★★★ ★★★

Intel SPMD Program Compiler (ISPC) ★★★★ ★

OpenMP (with ICC) ★★★ ★★★★

OpenCL ★★ ★★★

Multi Track Fitter
Graphics Processor Unit Many Integrated Core

Effective contention control
Needs independent

parallelization

Load a (simplified, due to limited memory) geometry and
material description onto the card. Or, select a slice with
a reference track on the host and only load the selection.

Add “zero-measurements” to equalize track sizes.

Measurements zero-padded for vectorization, but larger
matrices result in more compute-intensive inversions.

Computations per
double variable?

Predictable
workloads?

< 20 > 20

Single process
card ownership? no

no
yes

The offload model is
easiest to program

Task scheduling and
coprocessor sharing
requires a service
programming model

The service model
makes available all
compute resources
even when inefficient

Requires new
solutions

Host and MIC,
offload model

Host and MIC,
service model

Bandwidth limited:
prefer host

	Slide 1

