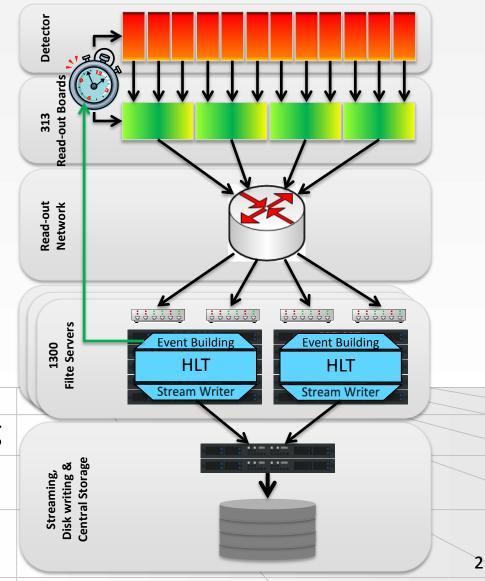


The LHCb Data Acquisition during LHC Run 1

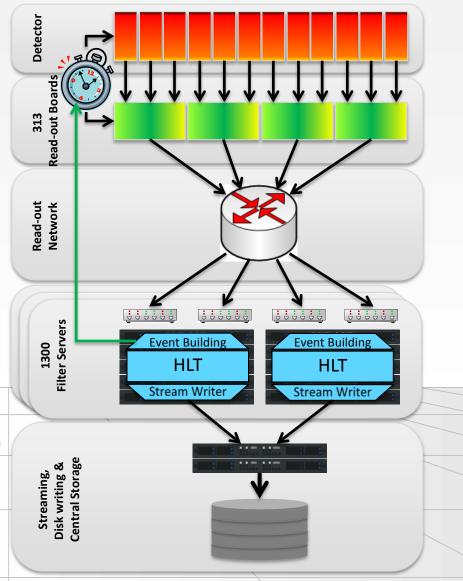
F. Alessio, L. Brarda, E. Bonaccorsi, D.H. Campora Perez, M. Chebbi, M. Frank,


C. Gaspar, L. Granado Cardoso, C. Haen, E. v. Herwijnen, R. Jacobsson, B. Jost, N. Neufeld, <u>R. Schwemmer</u>, Vijay Kartik, A. Zvyagin,

CHEP 2013

From Front-End to Hard Disk

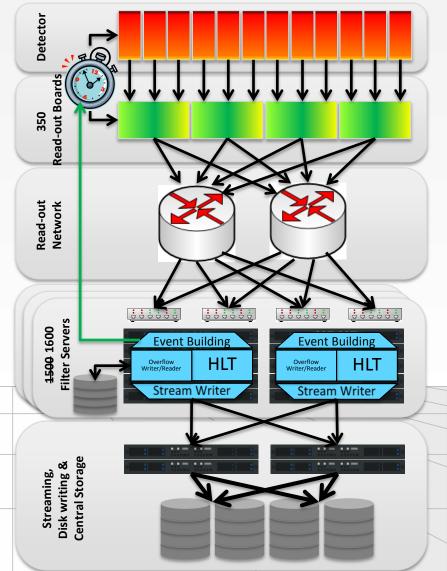
- O(10⁶) Front-end channels
- 300 Read-out Boards with 4 x 1 Gbit/s network links
- 1 Gbit/s based Read-out network
- 1500 Farm PCs
- >5000 UTP Cat 6 links
- 1 MHz read-out rate
- Data is pushed to the Event Building layer. There is no re-send in case of loss
- Credit based load balancing and throttling



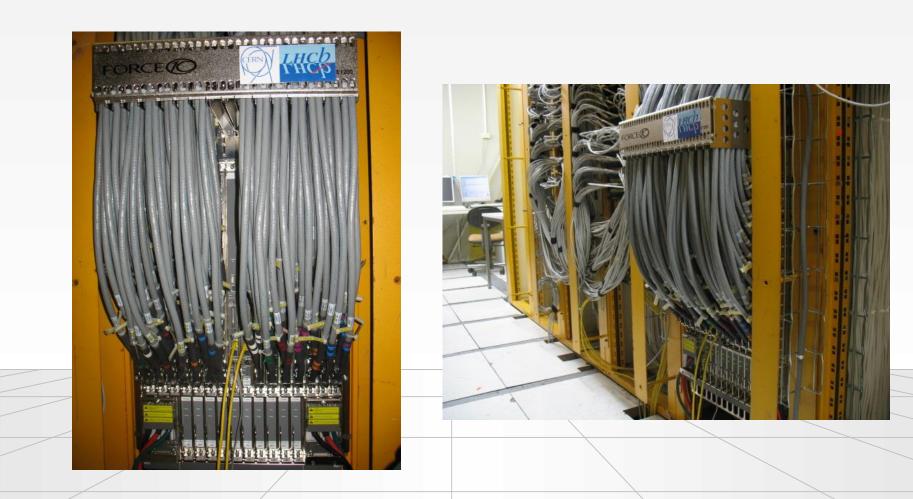
A bit of history

CERN

3


- Original DAQ Specs
 - Readout rate: 1 MHz
 - Up to 16 consecutive triggers
 - Total event size: 35 kB
 - HLT output rate: 2000 Hz
 - HLT output bandwidth: 80 MB/s
- Original DAQ architecture
 - More or less what's on the right
 - Single Core router
 - Data that can't be accepted by the HLT is throttled away.
- Original Storage Back-end
 - Controls software is served from central NFS/Samba servers
 - Trigger software is served from central NFS servers (Diskless Farm)
 - Monolithic Disk array
 - Good redundancy in data writers
 - Weak redundancy in File Systems and NFS/Samba servers

Where are we now?

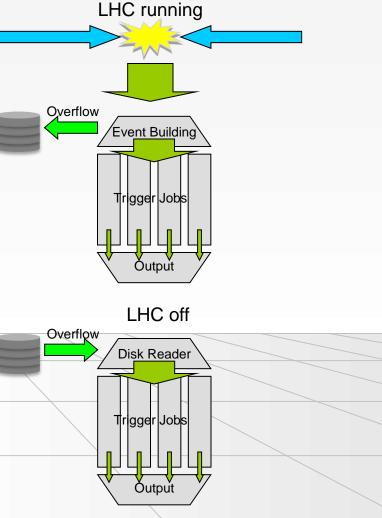

- Current DAQ Specs
 - Readout rate: 1 MHz
 - Up to 16 consecutive triggers (sort of)
 - Total event size: 35 50+ kB
 - HLT output rate: 2000 5000 Hz
 - HLT output bandwidth: 80 250 MB/s
 - 1000+ MB/s for special calibration runs
- Current DAQ architecture
 - Single Dual Core routers
 - Data that can't be accepted by the HLT is temporarily stored on HLT node for later processing
- Current Storage Back-end
 - Controls software is served from central NFS/Samba servers
 - Trigger software is served from central servers, but cached locally on farm node
 - Monolithic Disk array → internal separation between DAQ data and Software
 - Good redundancy in data writers
 - Self made NAS with OSS based High Availability NFS and Samba servers

Δ

How did we get there (I)

- Increase in Event Size:
 - Luminosity increase. Detector is running at twice its original design specs.
 - Design: 2x10³², Running at: 4x10³²
 - − Higher μ due to 50 ns bunch spacing → Higher detector occupancy → accepted events are bigger
- Output rate increase due to extension of physics program
- Calibration runs use up valuable beam time
 - The more throughput we have, the less beam time we lose
 - Can maintain more than 20 kHz of output with more than 1 GB/s of data rate for several hours
- VDM scans and SMOG runs for beam profile and luminosity measurements demand high throughputs
- Luminosity leveling
 - LHCb does not run at full LHC instantaneous luminosity
 - By continuously adjusting beams we do not suffer beam depletion over time
 - − We have to store more data than anticipated per fill → More disks mean more throughput!

- Moore's law helped a lot
 - Original estimates for computing power were very conservative
 - In fact we dropped another level of hardware triggers for software based triggering even before the experiment went online
 - Both trigger stages are run in software now
- Buy computing time through disk space
 - LHC duty cycle is not 100%
 - Process only a fraction of the incoming data immediately
 - Process the other fraction during inter fill gaps and technical stops



Deferred Trigger

• Procedure:

- Equipped 1000 machines in our farm with 1-2 TB disks each
- Over commit Farm by typically 30% while LHC is running
- Data that can not be processed by the HLT node is written to the local disk
- Once beams are dumped we start processing the data that has been temporarily stored on the disk
- Make sure you don't process the same event twice!
- Side effects:
 - Data is not contiguous any more
 - Events of several runs can be in the system simultaneously
 - Disks like to fail, especially if there are many
 - It can sometimes take days before a fill has been completely worked off
 - Had to severely altered the design of the data flow and book keeping
 - The DAQ is constantly pumping out data
 - Less and smaller maintenance windows
- On the bright side:
 - Every failed farm node meant a reduction in DAQ performance
 - Now: other nodes just write a little more to disk

Automation

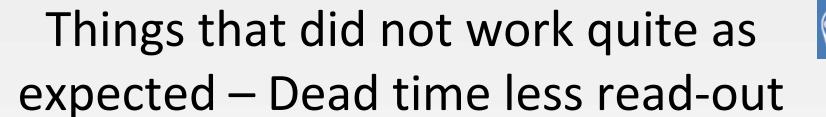
- Significant amount of efficiency is lost due to human latency
- Big Brother
 - Acts on state changes and communicates with the LHC
 - Automates common task sequences
 - Ramping of HV systems
 - Opening/Closing of the Vertex Detector
 - Calibration runs at EoF
 - Generally asks before acting
- Auto Pilot
 - Starts the system and keeps it running
 - Automatic recovery of common failures
 - Front-End recovery
 - Recovery of failed trigger jobs
 - Recovery of failed farm nodes
- Human intervention still necessary for unknown problems
- Speech synthesis program notifies operator in case of trouble
- \rightarrow 98% DAQ efficiency since adoption

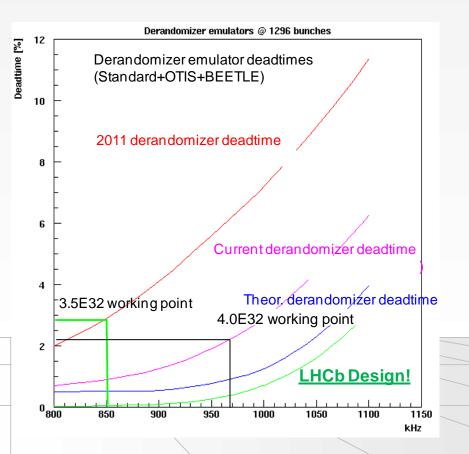
System State Procession ukc.luc ukc.	LHC: TOP								- D ×
Image: Control of the second during durin		System	State					Fri 24-Sep-2010	
Note: INJURCE	<u>ck</u>			A 8 -				rost	٩.
Image: State INJECTION Image: Contract Control Image: Control Image: Control Image: C	ub-System	State				LHC			
No. N			• ✓						_
NO. 0 UNIX (1000) (1000) (1000) Nakes UNIX (1000) (1000) (1000) (1000) Nakes (1000) (1000) (1000) (1000) (1000) Nakes (1000) (1000) (1000) (1000) (1000) (1000) Nakes (1000) (10000) (1000) (10000) <td></td> <td>-</td> <td></td> <td>NIEC</td> <td>TION</td> <td></td> <td>1.00</td> <td>1400 0007</td> <td></td>		-		NIEC	TION		1.00	1400 0007	
UKO OKO UKOWA WARANA AND AND AND AND AND AND AND AND AND				NJEC		Set Current:			
With Comparison United management With Comparison With Comparison With Comparison With Comparison <tr< td=""><td>LHCb Clock</td><td>EXTERNAL</td><td></td><td></td><td></td><td>5850 A</td><td>6850.0 A</td><td>UP</td><td></td></tr<>	LHCb Clock	EXTERNAL				5850 A	6850.0 A	UP	
With With With With With With With With	hakes						Contori	ν.	
Wyder State Requested With an and a state With an									
ystem State Requested Settings bb/batector State Requested With an and the setting of the s						VELO Closing Mana	ager		-
bi-betector BLUE. M. BURNET BLUE. M. B	System	State							
AND	b_LHC_HV&LV	OK	• INJECTION	<u></u>	Physics -	FILLY OUT		Sum	nary Panel
138.20/0 1 138.20/0 1	ub-Detector	State							0
INK. JW INK. INF. VOL. 399.000 mm NO. INK. INF. VOL. 399.000 mm INF. VOL	ELO_LHC_HV	OK							
N. J.K. M 00 07 With N 07 00 07 With N 07	IT_LHC_HV	OK	• STANDBY1 11	0.00 STANDBY1	•		1999.000 mm		
OBJECTIV INTERNATIONAL CONTRACTOR OF CON		-		1000					
Autor of the content of the conten	ICH2_LHC_HV					24-Sep 10:23:36 - Moving V 24-Sep 10:23:37 - Velo vill i 24-Sep 10:23:42 - Velo vill i	/ELO Out move out. ut.		-
Efficiency	RS_LHC_HV	OK	OFF 18	0.00 OFF	- 9	24-Sep 10:23:42 - Using lim 24-Sep 11:10:45 - Using lim	its for step: 25 its for step: 25		-
ib: Objector Time Lumi History in JAK, JW By Fill From Fill: 3014 To Fill: 3014 Lumi Efficiency in JAK, JW By Fill From Fill: 3014 To Fill: 3014 VELO Correction in JAK, JW By Time Since: 2012.06.01 00:00:00 VELO Correction in JAK, JW By Time Since: 2012.06.01 00:00:00 VELO Correction in JAK, JW Countrols the efficiency Retrieve Image: Since: 2012.06.01 Image: Since: Image: Since: <t< td=""><td></td><td>Efficiency</td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td></t<>		Efficiency							-
INSUME By Fill From Fill: 3014 To Fill: 3014 Lumi Efficiency INSUME ByTime Since: 2012.06.01 00:00:00 VELO Correction Retrieve Fill Number(s): 2690 - 3011 Retrieve Delivered Luminosity: 907800.33 nb ⁻¹ Recorded Luminosity: 862588.30 nb ⁻¹ Total Inefficiency: 4.98<%	UON_LHC_HV		5-	- 1				Archi	ve: 🔵
TUBLY By Fill From Fill: 3014 a To Fill: 3014 a Lumi Efficiency By Fill From Fill: 3014 a To Fill: 3014 a Lumi Efficiency By Time Since: 2012.06.01 00:00:00 v VELO Correction Retrieve Fill Number(s): 2690 - 3011 Delivered Luminosity: 907800.33 nb ⁻¹ Recorded Luminosity: 862588.30 nb ⁻¹ Total Inefficiency: 4.98 % Inefficiency breakdown: HV not READY: 0.09 % (when LHC in PHYSICS) VELO not Closed: 0.59 % (when HV READY) DAQ not Running: 2.13 % (when VELO Closed) DAQ lead Time: 2.25 % (when DAQ Running) DAQ Inefficiency Break Down	ub-Detecto	Time	Lumi	History					
Image: Weight of the second									
Inductor Supervision Inductor Expression Image: Supervision Supervision Image: Supervision Expression Image: Supervision Supervision Image: Supervision Expression Image: Supervision Expression <td>IT_LHC_LV</td> <td>C By Fil</td> <td>l From</td> <td>Fill: 3014</td> <td>🖃 To Fill: 🖪</td> <td>014 🗎 Lumi</td> <td>i Efficiency</td> <td>ㅋ </td> <td></td>	IT_LHC_LV	C By Fil	l From	Fill: 3014	🖃 To Fill: 🖪	014 🗎 Lumi	i Efficiency	ㅋ	
 ByTime Since: 2012.06.01 00.00:00 V VELO Correction Retrieve Luminosity Efficiency Fill Number(s): 2690 - 3011 Delivered Luminosity: 907800.33 nb⁻¹ Recorded Luminosity: 862588.30 nb⁻¹ Total Inefficiency: 4.98 % Inefficiency breakdown: HV not READY: 0.09 % (when LHC in PHYSICS) VELO not Closed: 0.59 % (when HV READY) DAQ not Running: 2.13 % (when VELO Closed) DAQ Dead Time: 2.25 % (when DAQ Running) DAQ Inefficiency Break Down 		1000		_	<u> </u>				
Luminosity Efficiency Fill Number(s): 2690 - 3011 Delivered Luminosity: 907800.33 nb ⁻¹ Recorded Luminosity: 862588.30 nb ⁻¹ Total Inefficiency: 4.98 % Inefficiency breakdown: HV not READY: 0.09 % (when LHC in PHYSICS) VELO not Closed: 0.59 % (when HV READY) DAQ not Running: 2.13 % (when VELO Closed) DAQ Dead Time: 2.25 % (when DAQ Running) DAQ Inefficiency Break Down	one jeno jer	O ByTin	ie Since	2012	.06.01 00:00:0		LU Correcti	on	
Fill Number(s): 2690 - 3011 Delivered Luminosity: 907800.33 nb ⁻¹ Recorded Luminosity: 862588.30 nb ⁻¹ Total Inefficiency: 4.98 % Inefficiency breakdown: HV not READY: 0.09 % (when LHC in PHYSICS) VELO not Closed: 0.59 % (when HV READY) DAQ not Running: 2.13 % (when VELO Closed) DAQ Dead Time: 2.25 % (when DAQ Running) DAQ Inefficiency Break Down	jes	1					Retrieve		
Fill Number(s): 2690 - 3011 Delivered Luminosity: 907800.33 nb ⁻¹ Recorded Luminosity: 862588.30 nb ⁻¹ Total Inefficiency: 4.98 % Inefficiency breakdown: HV not READY: 0.09 % (when LHC in PHYSICS) VELO not Closed: 0.59 % (when HV READY) DAQ not Running: 2.13 % (when VELO Closed) DAQ Dead Time: 2.25 % (when DAQ Running) DAQ Inefficiency Break Down	010 13 34 54 - 010 13 35 05 -	Lumin	osity Effi	ciency —					Close
Delivered Luminosity: 907800.33 nb ⁻¹ Recorded Luminosity: 862588.30 nb ⁻¹ Total Inefficiency: 4.98 % Inefficiency breakdown: HV not READY: 0.09 % (when LHC in PHYSICS) VELO not Closed: 0.59 % (when HV READY) DAQ not Running: 2.13 % (when VELO Closed) DAQ Dead Time: 2.25 % (when DAQ Running) DAQ Inefficiency Break Down		Eill N	umberís	. 2690 - 30	111				
Recorded Luminosity: 862588.30 nb ⁻¹ Total Inefficiency: 4.98 % Inefficiency breakdown: HV not READY: 0.09 % (when LHC in PHYSICS) VELO not Closed: 0.59 % (when HV READY) DAQ not Running: 2.13 % (when VELO Closed) DAQ Dead Time: 2.25 % (when DAQ Running) DAQ Inefficiency Break Down			amperija						
Total Inefficiency: 4.98 % Inefficiency breakdown: HV not READY: 0.09 % (when LHC in PHYSICS) VELO not Closed: 0.59 % (when HV READY) DAQ not Running: 2.13 % (when VELO Closed) DAQ Dead Time: 2.25 % (when DAQ Running) DAQ Inefficiency Break Down		Deliv	ered Lu	minosity:	907800.33	nb ⁻¹			
Total Inefficiency: 4.98 % Inefficiency breakdown: HV not READY: 0.09 % (when LHC in PHYSICS) VELO not Closed: 0.59 % (when HV READY) DAQ not Running: 2.13 % (when VELO Closed) DAQ Dead Time: 2.25 % (when DAQ Running) DAQ Inefficiency Break Down		_		· · ·		1.1			
Inefficiency breakdown: HV not READY: 0.09 % (when LHC in PHYSICS) VELO not Closed: 0.59 % (when HV READY) DAQ not Running: 2.13 % (when VELO Closed) DAQ Dead Time: 2.25 % (when DAQ Running) DAQ Inefficiency Break Down		Reco	rded Lu	minosity:	862588.30	10-1			
Inefficiency breakdown: HV not READY: 0.09 % (when LHC in PHYSICS) VELO not Closed: 0.59 % (when HV READY) DAQ not Running: 2.13 % (when VELO Closed) DAQ Dead Time: 2.25 % (when DAQ Running) DAQ Inefficiency Break Down				_					
HV not READY: 0.09 % (when LHC in PHYSICS) VELO not Closed: 0.59 % (when HV READY) DAQ not Running: 2.13 % (when VELO Closed) DAQ Dead Time: 2.25 % (when DAQ Running) DAQ Inefficiency Break Down		To	tal Ineffi	ciency:	4.98 %				
HV not READY: 0.09 % (when LHC in PHYSICS) VELO not Closed: 0.59 % (when HV READY) DAQ not Running: 2.13 % (when VELO Closed) DAQ Dead Time: 2.25 % (when DAQ Running) DAQ Inefficiency Break Down									
VELO not Closed: 0.59 % (when HV READY) DAQ not Running: 2.13 % (when VELO Closed) DAQ Dead Time: 2.25 % (when DAQ Running) DAQ Inefficiency Break Down		In	efficienc	y breakdo	wn:				
VELO not Closed: 0.59 % (when HV READY) DAQ not Running: 2.13 % (when VELO Closed) DAQ Dead Time: 2.25 % (when DAQ Running) DAQ Inefficiency Break Down				-					
DAQ not Running: 2.13 % (when VELO Closed) DAQ Dead Time: 2.25 % (when DAQ Running) DAQ Inefficiency Break Down			HV not R	EADY:	0.09 % (when LHC in F	PHYSICS)		
DAQ not Running: 2.13 % (when VELO Closed) DAQ Dead Time: 2.25 % (when DAQ Running) DAQ Inefficiency Break Down			(E) O	ايار محداد م					
DAQ Dead Time: 2.25 % (when DAQ Running) DAQ Inefficiency Break Down			VELO NO	t closed.	0.59 % (when HV REAL	(דט		
DAQ Dead Time: 2.25 % (when DAQ Running) DAQ Inefficiency Break Down			DAQ not	Running:	2.13 %6	when VELO CI	osed)		
DAQ Inefficiency Break Down									
			DAQ Dea	d Time:	2.25 % (vhen DAQ Rur	nning)		
		Dec	. In . 65 - 1		k Daum I				
Dismiss		DAG	inemicie	ency Brea	Lown				
Dismiss	- 23	<u> </u>							
		tan					Di-		
		TWA -					Dismi	55	
		1							

What went wrong?

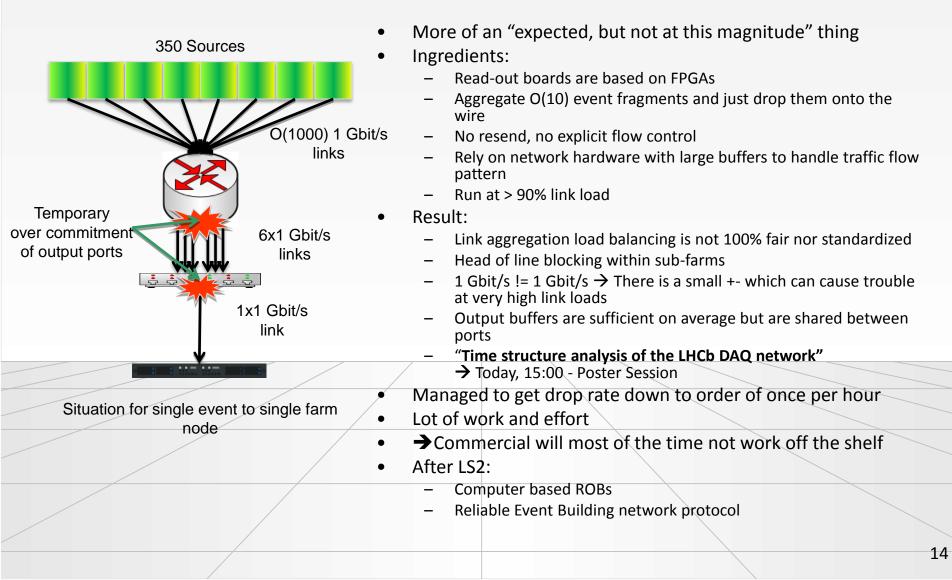
Things that did not work quite as expected – Software Rollout

- HLT software roll-out on farm
 - Event Filter Farm is based on diskless nodes
 - Operating system and all software comes via NFS servers
- Software is very modular and organized in small, shared object libraries
 - Libraries are distributed over a large directory tree
 - Several versions of those libraries exist and the correct version is chosen by adding its directory to LD_LIBRARY_PATH of a job
 - LD_LIBRARY_PATH contains O(100) entries
- Launching an HLT job causes several thousand cache misses while searching for a particular .so file
 - No multi-threading → Multiple jobs per farm node
 - Cache misses are propagated to the NFS server
 - 17.000 Jobs are starting at the same time
- Even with several very powerful NFS servers it would have eventually taken an hour to successfully launch all jobs

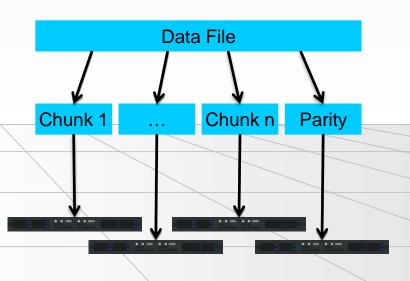



Things that did not work quite as expected – Software Rollout

- First solution: Custom, Union-FS like Fuse File System
 - Copies all necessary files into local ram-disk on first application launch
 - Memorizes cache misses locally
 - Successive launches are served from ram-disk and internal DEntry cache
 - Slight disadvantage: Read only! Changes of directory structure are not allowed after directory has been seen for the first time
 - − \rightarrow Startup time: 5-6 mins
- Second step: Launch less jobs
 - Each machine starts only 1 job and clones are *fork()*ed once job has been fully configured and is running
 - Additional benefit: Reduces memory consumption by sharing static pages
 - \rightarrow Startup time: 2 mins
- Last step:
 - Create memory checkpoint image of running job and store it as monolithic file
 - File is distributed to farm nodes via Bit Torrent protocol
 - Launch single job and fork clones once fully configured
 - \rightarrow Startup time: O(seconds)


- TDR Specs:
 - 1 MHz L0 rate
 - 16 consecutive triggers
- Front-ends (mostly) fulfill the specs
- What happens after the 16 consecutive triggers?
 - Some FEs need more time to recover from trigger trains due to organization of internal buffers
 - Some FEs have problems with certain trigger patterns
- VHDL code of FEs integrated into Read-out Supervisor FPGA
 - Internally emulates Front-end
 - Determines when buffers would overflow
- While we can't fix the problems in the FEs, we can mitigate the damage
- Dead time reduction: $6\% \rightarrow 2\%$

Things that did not work quite as expected – Push based Event Building



Things that did not work quite as expected – Deferred Trigger + Unprotected Disks

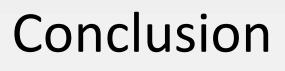
- Deferred trigger data is transient and stays on disk only for a relatively short time
- Disks are usually not completely full
- We accept, that if a disk breaks, we lose the data on it
- Node level disk redundancy is hard to justify
 - Not enough disk slots for Raid 5+
 - Raid 1 seems a bit of a waste considering the volatility of the data
- Disk hard failure rate is actually very low
- However: Soft failures rate is quite high
 - File System goes to read-only mode
 - In order to not process the same event twice, files are open()ed and immediately unlink()ed
 - File stays in limbo until the trigger job calls close()
 - − →Does not work if FS is read-only!
- Cluster File Systems?
 - Either replication (Raid 1) or assume that disk back-end is already protected
 - Too wasteful
- Future: Write our own distributed DAQ file system
 - "ECFS: A decentralized, distributed and fault-tolerant FUSE file system for the LHCb online farm" → Unfortunately right now

LS1, Run 2 and beyond

Operational Changes – Virtual Machines

- Modern Servers are too powerful for controls purposes
 - People like to confine different sub-sections of the control system by using different servers
 - A lot of potential CPU power is wasted because the granularity of a single machine is quite large
- Virtual Machines are a way out of this
 - Still strong borders between sub-systems
 - Less physical servers
 - Higher availability through live migration
- Challenges
 - Control system machines eventually have to connect to real hardware
 - Use hardware interfaces that are Ethernet based
 - Limited amount of small machines that act as Hardware ⇔ Ethernet bridges
 - Upside: Good motivation to get rid of most of the Windows machines in our system
 - Less physical servers, but infrastructure becomes more complicated
 - "Performance evaluation and capacity planning for a scalable and highly available virtualization infrastructure for the LHCb experiment",
 - → Today, 15:00 Poster Session

- Offline processing on Online Farm during shutdown
 - Online Farm represents a significant computing site
 - Turned farm into a target for our Offline job scheduling system
 - Currently running simulation jobs
- More deferred triggering
 - Currently storing a lot of data that is thrown away by the trigger process later
 - Instead: run a fast selection before storing data and run more detailed processing later/in parallel
 - Allows better usage of the available disk space because data rate has been reduced
 - "Deferred High Level Trigger in LHCb: A Boost to CPU Resource Utilization"
 - → Tue, 15:45 This Track


LS2 and beyond

- Trigger free read-out
 - Currently the Online Farm is located close to the detector
 - Need to move upstairs due to power and cooling constraints
 - How do we transport 32 Tbit/s of data over 300 m without going bankrupt?
 - How do we solve the Event Building Problem at these data rates?
 - "DAQ Architecture for the LHCb Upgrade"
 → Today, 15:00 This Track
- Move the Read-out Boards closer into the realm of COTS
 - PCIe based ROB
 - Can be mounted inside a computer
 - The future of networks is hard to predict
 - Gives more options for adopting future network technologies
 - Allows more intelligent Event Building protocols
 - "A PCIe Gen3 based readout for the LHCb upgrade"
 → Tue, 14:10 This Track
- Alternative computing architectures
 - GPUs: "A GPU offloading mechanism for LHCb "
 → Today, 15:00 Poster Session
 - ARM: "Measurements of the LHCb software stack on the ARM architecture"
 - → Tue, 16:10 Software Engineering, Parallelism & Multi-Core

- The LHCb Data Acquisition has outperformed its original design specs by more than a factor two, more in certain areas
- Made possible by
 - using our available computing resources to their fullest
 - adopting automation and high availability techniques
 - a lot of hard work by everybody involved
- It was not always smooth sailing
- We learned many lessons from our current system
- We will employ those lessons for future improvements of the DAQ

Thank you for your attention

- Advertisements
 - "ECFS: A decentralized, distributed and fault-tolerant FUSE file system for the LHCb online farm"
 - "DAQ Architecture for the LHCb Upgrade"
 → Today, 15:00 This Track
 - "Time structure analysis of the LHCb Online network"
 → Today, 15:00 Poster Session
 - "Performance evaluation and capacity planning for a scalable and highly available virtualization infrastructure for the LHCb experiment",
 - → Today, 15:00 Poster Session
 - "A GPU offloading mechanism for LHCb "
 → Today, 15:00 Poster Session
 - "Phronesis, a diagnosis and recovery tool for system administrators"
 → Today, 15:00 Poster Session
 - "A PCIe GEn3 based readout for the LHCb upgrade"
 → Tue, 14:10 This Track
 - "Deferred High Level Trigger in LHCb: A Boost to CPU Resource Utilization"
 Tue, 15:45 This Track
 - "Measurements of the LHCb software stack on the ARM architecture"
 - → Tue, 16:10 Software Engineering, Parallelism & Multi-Core