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Disclaimer!

• This presentation assumes you know the 
basics of the ROOT I/O implementation.

• We’ll cover some of the basics as a 
refresher.

• Not a ROOT expert?  Instead of reading 
your email, try this link: http://
iopscience.iop.org/
1742-6596/331/4/042005 
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Why high latency?
• We are interested in improving the experience on 

high latency networks because:

• We can provide end-users immediate 
interactive file access via high-latency networks 
(“the Internet”).

• This allows us to explore and adopt use cases 
which break data locality.

• We take “high latency” to mean greater than 50 
millisecond ping time.
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High-Latency is the 
future!

• We have seen increased interest in data 
federations within the WLCG.

• I thoroughly believe that this model is appropriate 
for HEP outside LHC.

• It is important to identify approaches we can 
feed back into ROOT.

• If we continue to target smaller computing 
resources, departmental clusters, and individual 
laptops, the network will only get worse!
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Test Methodology
• Performance tests shown in this presentation compare reading data locally 

(Nebraska to Nebraska) versus remotely (Nebraska to CERN lxplus).

• Local reads: 25.2MB/s; ping time 0.3ms.

• Remote read: 18.7MB/s; ping time 137ms.

• Performance tests were done by timing a simple job using our experiment 
framework, CMSSW.  We read 1,000 events; branches read depend on two 
parameters:

• Read amount: percent of branches (by volume) to read for every event.  Set 
to 30%.  Each event gets the same set of branches.

• Trigger prescale: frequency at which module should read out all branches.  
Set to 50.

• Done with IOExerciser module (present in recent CMSSW releases).

• Results are normalized by time it takes a job to run locally with all optimizations.
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I/O Time

• Minimize the time!  Techniques we’ve used:

A. Reduce number of reads: Aggregate together multiple reads into 
a single network request.

B. Reduce data read: Less data = less transfer time.  [This is a 
surprisingly small effect - we tend to be latency-bound.]

• We discuss this only in the paper, not here.

C. Increase parallelism: Utilize multiple TCP streams for data 
transfer.
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sum(latency + (# bytes read) / [(bandwidth) * (parallel streams)])

We use the following model*:

*Note we assume the limit is TCP-rate, not network capacity!

sum is taken over all read requests
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The Shortest ROOT IO 
Tutorial Ever
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ROOT File Layout

0 1 2 3 4 5 6 7

A

B

C

D

Event

Br
an
ch

Basket
Basket has 4 objects in branch A.

Baskets exist to compress like objects 
together.
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ROOT File Layout
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Branch is a name (“C”) and object 
type; there is an object per event per 

branch (may be NULL).
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ROOT File Layout
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To read all branches from an event, you need one 
basket per branch.

Baskets may cover an arbitrary number of events - 
hence, event content may be spread throughout a file.
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ROOT File Layout
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A cluster is delineated by the boundary where ROOT 
forced all baskets to align.  This prevents events that 
are logically far apart (0 and 7) from sharing baskets 

on disk and improves event locality.

I.e., if the cluster size is set to 20MB, then ROOT will 
write files such that all data for any given event is 

within a 20MB range.11
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ROOT File Layout
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Bytestream Layout

In this example, we have 8 events and 
4 branches in two clusters.

Baskets are written to disk once they 
are full.

...
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TTreeCache Basics

• ROOT deserializing code will read out one basket at a time from 
disk.  These baskets can be quite small (hundreds of bytes), 
causing a huge number of random reads.

• Observation / assumptions:

• If we read out branch A of event X, then we will likely read 
out branch A of event X+1.

• The set of branches read does not vary widely between 
events.

• The TTreeCache will observe what branches are read for the 
first twenty events.  Afterward, it will prefetch the corresponding 
branch baskets for as many clusters as will fit in memory.
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Why Bother?
• Default behavior is one IO request (and network 

round trip) per basket; as there are often thousands 
of branches per event, this is a huge number of 
network round trips.

• TTreeCache can issue hundreds or thousands of 
requests at once.

• Compared to the fully-optimized, single-source 
CMSSW:

• Disabling TTreeCache results in a 1.7x 
slowdown for the local case.

• And a 177x slowdown for the high-latency case.
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Strategy A: Reduce 
number of reads 

15

Monday, October 7, 13



Improved TTreeCache 
startup

• When training, the TTreeCache reads out one basket at a time.

• If the user reads 1000 branches on the first event, there are 
1000 network round trips; on our test network, this is 
~130second delay.

• We create a second TTreeCache which fetches all data for the 
first 20 events (or 20MB; whatever is smaller) and we separately 
record all branches used.

• After the first 20 events, we manually train another 
TTreeCache which is used throughout the rest of the job 
run.

• Hence, the first 20 events typically are read with a single 
network round-trip.
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Startup TTreeCache
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Startup TTreeCache
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Startup TTreeCache
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Regular TTreeCache prefetches branches A & B
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Startup TTreeCache
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User reads from branches A & B
for second cluster.
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Default behavior: 4 reads.
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Startup Cache 
Performance

• For local reads, removing the startup cache 
causes a 1.03x slowdown.

• For remote reads, removing this cache causes a 
13.8x slowdown.

• The performance difference is all from the 
training period.  For remote reads, when 
removing the cache, the first 100 events take 8 
minutes.  The next 100 events take six seconds.
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Trigger Pattern 
Optimization

• It is common for an analysis to read branches X, Y, and Z for each event; 
then, based on the contents of those branches, read out additional 
branches.

• We cannot do prefetching for this case - the code has no way of 
knowing what will be used! 

• ROOT’s default behavior is to do one I/O per basket if the user 
accesses a branch not in the cache.

• We again use a secondary TTreeCache: whenever we notice a cache miss 
will happen for the primary TTreeCache, we switch to the other 
TTreeCache, which reads all the missing baskets for the event.

• How do we determine the missing baskets?  The first time the 
“trigger” occurs, we prefetch all branches and record which ones 
were used.
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Trigger pattern 
optimization
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Trigger pattern 
optimization
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This is our first cache-miss.
Trigger cache prefetches all branches for event 6.
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Trigger pattern 
optimization
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Trigger pattern 
optimization
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Trigger fired for event 6;
Last time, only branches B and C were used.

We only pre-fetch those.
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Trigger Pattern 
Optimization
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ROOT default reads: 7
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Trigger Cache

• Disabling the trigger cache incurs a 1.2x 
slowdown on the local network (compared 
to the normal CMSSW).

• Disabling the trigger cache incurs a 23x 
slowdown on the remote network.
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Summary - Avoiding 
Network Round Trips

Defaults

No Trigger Cache

No Startup Cache

0 7.5 15 22.5 30

Remote Local

Not shown: ROOT defaults (no TTreeCache) reading remotely is 177x slower than 
CMSSW’s defaults reading locally!

Time / (default local performance)
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Strategy C: Increase 
Parallelism
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Multi-source I/O

• Multisource I/O is the heart of the 
improvements for Run II of the LHC.

• Currently limited to Xrootd protocol; 
techniques used would also apply to other 
protocols which have read pipelining or 
vector reads.

• Implementation strongly depends on 
having an asynchronous client and C++11
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Why not Bittorrent?
• Most multisource protocols copy the entire file to the 

client.

• Files are broken into large-ish chunks; each source 
downloads some subset of the chunks.

• This is not usable for us: we may be reading a small 
percentage of the file.

• The pieces we read don’t necessarily fit neatly into 
equal-sized chunks.

• We may not have space or local I/O bandwidth to 
buffer the file on local disk.
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Multisource IO
• Design goals:

• Quality metric: Determine a metric for quality of the source 
server; the algorithm should prefer servers with a higher quality.

• Source discovery: Actively balance transfers over multiple links in 
order to determine several high-quality sources of the file.

• Recovery: Recover from transient I/O errors at a single source.

• Do no harm: Minimize the impact on the source site versus a 
single-source client. Understand both average case and the 
worst case scenarios.

• Balance: Have the number of requests per source be 
proportional to source quality.

For the impatient who cannot possibly wait until the CHEP paper is published:
https://github.com/bbockelm/cmssw/blob/multisource-xrootd-v3/Utilities/XrdAdaptor/doc/multisource_algorithm_design.txt
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Basic Design - State

• Throughout the lifetime of the file object, 
three sets are maintained:

• Active servers: servers we are currently 
using to service reads (max of 2).

• Inactive servers: servers with an open file 
handle, but not used by default.

• Disabled servers: Servers which have been 
used previously but had a fatal error.
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Basic Design - Source 
Discovery

• Inactive sources and disabled sources are initialized empty.

• The active sources set is initialized with the data server 
returned by the redirector during the initial file open.

• Every 5 seconds, a new file-open is attempted (the client 
requests the redirector to exclude currently-open 
sources); the resulting server is added to the active 
sources.  If there are already two servers in the active 
sources, it is added to the inactive sources.

• If the redirector returns a file not found, then the next 
file-open probe is scheduled for 2 minutes in the future.
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Basic design - IO 
request

• For each I/O request:

• Check current quality of each source.

• If a currently-active source has worse quality than an inactive source, swap 
the two.

• Randomly swap active and inactive sources with a 1% probability per 10MB.

• Split the I/O request proportionally by volume in two according to the current 
active source quality.

• Request is split in two nearly-contiguous chunks; this allows the server to 
see sequential I/O if possible.

• Issue the two requests to the active sources.  Return result to client if both 
succeed.

• If a request fails, move corresponding source to the disabled sources.  
Immediately reissue request from one of the inactive sources if possible.  
Otherwise, throw an exception.
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Multisource Illustration

Time after startup (s)

Fi
le

 o
ffs

et
 r

ea
d 

(M
B)

(one data point per entry in vector read)

37

Read offset versus time, per source
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Multisource 
Performance

• If the redirector picks the optimal site for the single-source case, there is no 
performance improvement.

• If the redirector picks a sub-optimal site, we see large improvements by using 
multi-source:

• For a client at CERN, reading from Nebraska and DESY, the speedup is 1.37 
compared to reading from Nebraska-only.

• Single-source reading from DESY has the same speed as multi-source reading 
from DESY and Nebraska.

• If a server stops working - or its performance drops significantly compared to 
the other source - multisource will stop using it.

• So - multisource client basically shields us from poor redirector choices and 
poorly-performing servers.

• It does not fundamentally make things faster, especially as we are not TCP-
loss-limited on the test connection (Nebraska-to-CERN).
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Conclusions
• We believe acceptable performance over high-latency links enables new use 

cases for HEP and decreases time-to-science.

• Default ROOT IO (regardless of whether TTreeCache is used) does not perform 
acceptably over high-latency links for our test case.

• We have additional mechanisms to make CMSSW performance acceptable.

• An obvious future step is to contribute these ideas back into the ROOT IO 
core.

• The multisource client allows us to avoid the worst problems within the 
infrastructure while the job is running - whether they are issues from poor 
redirection choices or poor server performance.

• For cases where server performance and selection are optimal, it is 
performance-neutral.

• As we do not assume anything is optimal, we hope this will be an important 
advance for CMS in Run2.
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