
Optimizing High-
Latency I/O in CMSSW

Brian Bockelman
CHEP 2013

1

Monday, October 7, 13

Disclaimer!

• This presentation assumes you know the
basics of the ROOT I/O implementation.

• We’ll cover some of the basics as a
refresher.

• Not a ROOT expert? Instead of reading
your email, try this link: http://
iopscience.iop.org/
1742-6596/331/4/042005

2

Monday, October 7, 13

http://iopscience.iop.org/1742-6596/331/4/042005
http://iopscience.iop.org/1742-6596/331/4/042005
http://iopscience.iop.org/1742-6596/331/4/042005
http://iopscience.iop.org/1742-6596/331/4/042005
http://iopscience.iop.org/1742-6596/331/4/042005
http://iopscience.iop.org/1742-6596/331/4/042005

Why high latency?
• We are interested in improving the experience on

high latency networks because:

• We can provide end-users immediate
interactive file access via high-latency networks
(“the Internet”).

• This allows us to explore and adopt use cases
which break data locality.

• We take “high latency” to mean greater than 50
millisecond ping time.

3

Monday, October 7, 13

High-Latency is the
future!

• We have seen increased interest in data
federations within the WLCG.

• I thoroughly believe that this model is appropriate
for HEP outside LHC.

• It is important to identify approaches we can
feed back into ROOT.

• If we continue to target smaller computing
resources, departmental clusters, and individual
laptops, the network will only get worse!

4

Monday, October 7, 13

Test Methodology
• Performance tests shown in this presentation compare reading data locally

(Nebraska to Nebraska) versus remotely (Nebraska to CERN lxplus).

• Local reads: 25.2MB/s; ping time 0.3ms.

• Remote read: 18.7MB/s; ping time 137ms.

• Performance tests were done by timing a simple job using our experiment
framework, CMSSW. We read 1,000 events; branches read depend on two
parameters:

• Read amount: percent of branches (by volume) to read for every event. Set
to 30%. Each event gets the same set of branches.

• Trigger prescale: frequency at which module should read out all branches.
Set to 50.

• Done with IOExerciser module (present in recent CMSSW releases).

• Results are normalized by time it takes a job to run locally with all optimizations.

5

Monday, October 7, 13

I/O Time

• Minimize the time! Techniques we’ve used:

A. Reduce number of reads: Aggregate together multiple reads into
a single network request.

B. Reduce data read: Less data = less transfer time. [This is a
surprisingly small effect - we tend to be latency-bound.]

• We discuss this only in the paper, not here.

C. Increase parallelism: Utilize multiple TCP streams for data
transfer.

6

sum(latency + (# bytes read) / [(bandwidth) * (parallel streams)])

We use the following model*:

*Note we assume the limit is TCP-rate, not network capacity!

sum is taken over all read requests

Monday, October 7, 13

The Shortest ROOT IO
Tutorial Ever

7

Monday, October 7, 13

ROOT File Layout

0 1 2 3 4 5 6 7

A

B

C

D

Event

Br
an
ch

Basket
Basket has 4 objects in branch A.

Baskets exist to compress like objects
together.

8

Monday, October 7, 13

ROOT File Layout

0 1 2 3 4 5 6 7

A

B

C

D

Event

Br
an
ch

Branch

Branch is a name (“C”) and object
type; there is an object per event per

branch (may be NULL).

9

Monday, October 7, 13

ROOT File Layout

0 1 2 3 4 5 6 7

A

B

C

D

Event

Br
an
ch

Event

To read all branches from an event, you need one
basket per branch.

Baskets may cover an arbitrary number of events -
hence, event content may be spread throughout a file.

10

Monday, October 7, 13

ROOT File Layout

0 1 2 3 4 5 6 7

A

B

C

D

Event

Br
an
ch

Cluster

A cluster is delineated by the boundary where ROOT
forced all baskets to align. This prevents events that
are logically far apart (0 and 7) from sharing baskets

on disk and improves event locality.

I.e., if the cluster size is set to 20MB, then ROOT will
write files such that all data for any given event is

within a 20MB range.11

Monday, October 7, 13

ROOT File Layout
0 1 2 3 4 5 6 7

A

B

C

D

Event / Branch 2D view
Event

Br
an

ch

Bytestream Layout

In this example, we have 8 events and
4 branches in two clusters.

Baskets are written to disk once they
are full.

...

12

Monday, October 7, 13

TTreeCache Basics

• ROOT deserializing code will read out one basket at a time from
disk. These baskets can be quite small (hundreds of bytes),
causing a huge number of random reads.

• Observation / assumptions:

• If we read out branch A of event X, then we will likely read
out branch A of event X+1.

• The set of branches read does not vary widely between
events.

• The TTreeCache will observe what branches are read for the
first twenty events. Afterward, it will prefetch the corresponding
branch baskets for as many clusters as will fit in memory.

13

Monday, October 7, 13

Why Bother?
• Default behavior is one IO request (and network

round trip) per basket; as there are often thousands
of branches per event, this is a huge number of
network round trips.

• TTreeCache can issue hundreds or thousands of
requests at once.

• Compared to the fully-optimized, single-source
CMSSW:

• Disabling TTreeCache results in a 1.7x
slowdown for the local case.

• And a 177x slowdown for the high-latency case.
14

Monday, October 7, 13

Strategy A: Reduce
number of reads

15

Monday, October 7, 13

Improved TTreeCache
startup

• When training, the TTreeCache reads out one basket at a time.

• If the user reads 1000 branches on the first event, there are
1000 network round trips; on our test network, this is
~130second delay.

• We create a second TTreeCache which fetches all data for the
first 20 events (or 20MB; whatever is smaller) and we separately
record all branches used.

• After the first 20 events, we manually train another
TTreeCache which is used throughout the rest of the job
run.

• Hence, the first 20 events typically are read with a single
network round-trip.

16

Monday, October 7, 13

Startup TTreeCache

17

0 1 2 3 4 5 6 7

A

B

C

D

Read all baskets in first cluster using
startup TTreeCache

Monday, October 7, 13

Startup TTreeCache

18

User reads from branches A & B
for first cluster

0 1 2 3 4 5 6 7

A

B

C

D

Monday, October 7, 13

Startup TTreeCache

19

Regular TTreeCache prefetches branches A & B
for second cluster

0 1 2 3 4 5 6 7

A

B

C

D

Monday, October 7, 13

Startup TTreeCache

20

User reads from branches A & B
for second cluster.

0 1 2 3 4 5 6 7

A

B

C

D

Total reads: 2
Default behavior: 4 reads.

Monday, October 7, 13

Startup Cache
Performance

• For local reads, removing the startup cache
causes a 1.03x slowdown.

• For remote reads, removing this cache causes a
13.8x slowdown.

• The performance difference is all from the
training period. For remote reads, when
removing the cache, the first 100 events take 8
minutes. The next 100 events take six seconds.

21

Monday, October 7, 13

Trigger Pattern
Optimization

• It is common for an analysis to read branches X, Y, and Z for each event;
then, based on the contents of those branches, read out additional
branches.

• We cannot do prefetching for this case - the code has no way of
knowing what will be used!

• ROOT’s default behavior is to do one I/O per basket if the user
accesses a branch not in the cache.

• We again use a secondary TTreeCache: whenever we notice a cache miss
will happen for the primary TTreeCache, we switch to the other
TTreeCache, which reads all the missing baskets for the event.

• How do we determine the missing baskets? The first time the
“trigger” occurs, we prefetch all branches and record which ones
were used.

22

Monday, October 7, 13

Trigger pattern
optimization

23

0 1 2 3 4 5 6 7

A

B

C

D

4 5 6 7

Suppose branch A is our physics trigger;
CMSSW notices object 6A is requested

Monday, October 7, 13

Trigger pattern
optimization

24

This is our first cache-miss.
Trigger cache prefetches all branches for event 6.

0 1 2 3 4 5 6 7

A

B

C

D

4 5 6 7

Monday, October 7, 13

Trigger pattern
optimization

25

User reads branches B and C of event 6.

0 1 2 3 4 5 6 7

A

B

C

D

4 5 6 7

Monday, October 7, 13

Trigger pattern
optimization

26

Trigger fired for event 6;
Last time, only branches B and C were used.

We only pre-fetch those.

0 1 2 3 4 5 6 7

A

B

C

D

4 5 6 7

Monday, October 7, 13

Trigger Pattern
Optimization

27

Total reads: 5
ROOT default reads: 7

0 1 2 3 4 5 6 7

A

B

C

D

4 5 6 7

Monday, October 7, 13

Trigger Cache

• Disabling the trigger cache incurs a 1.2x
slowdown on the local network (compared
to the normal CMSSW).

• Disabling the trigger cache incurs a 23x
slowdown on the remote network.

28

Monday, October 7, 13

Summary - Avoiding
Network Round Trips

Defaults

No Trigger Cache

No Startup Cache

0 7.5 15 22.5 30

Remote Local

Not shown: ROOT defaults (no TTreeCache) reading remotely is 177x slower than
CMSSW’s defaults reading locally!

Time / (default local performance)

29

Monday, October 7, 13

Strategy C: Increase
Parallelism

30

Monday, October 7, 13

Multi-source I/O

• Multisource I/O is the heart of the
improvements for Run II of the LHC.

• Currently limited to Xrootd protocol;
techniques used would also apply to other
protocols which have read pipelining or
vector reads.

• Implementation strongly depends on
having an asynchronous client and C++11

31

Monday, October 7, 13

Why not Bittorrent?
• Most multisource protocols copy the entire file to the

client.

• Files are broken into large-ish chunks; each source
downloads some subset of the chunks.

• This is not usable for us: we may be reading a small
percentage of the file.

• The pieces we read don’t necessarily fit neatly into
equal-sized chunks.

• We may not have space or local I/O bandwidth to
buffer the file on local disk.

32

Monday, October 7, 13

Multisource IO
• Design goals:

• Quality metric: Determine a metric for quality of the source
server; the algorithm should prefer servers with a higher quality.

• Source discovery: Actively balance transfers over multiple links in
order to determine several high-quality sources of the file.

• Recovery: Recover from transient I/O errors at a single source.

• Do no harm: Minimize the impact on the source site versus a
single-source client. Understand both average case and the
worst case scenarios.

• Balance: Have the number of requests per source be
proportional to source quality.

For the impatient who cannot possibly wait until the CHEP paper is published:
https://github.com/bbockelm/cmssw/blob/multisource-xrootd-v3/Utilities/XrdAdaptor/doc/multisource_algorithm_design.txt

33

Monday, October 7, 13

https://github.com/bbockelm/cmssw/blob/multisource-xrootd-v3/Utilities/XrdAdaptor/doc/multisource_algorithm_design.txt
https://github.com/bbockelm/cmssw/blob/multisource-xrootd-v3/Utilities/XrdAdaptor/doc/multisource_algorithm_design.txt

Basic Design - State

• Throughout the lifetime of the file object,
three sets are maintained:

• Active servers: servers we are currently
using to service reads (max of 2).

• Inactive servers: servers with an open file
handle, but not used by default.

• Disabled servers: Servers which have been
used previously but had a fatal error.

34

Monday, October 7, 13

Basic Design - Source
Discovery

• Inactive sources and disabled sources are initialized empty.

• The active sources set is initialized with the data server
returned by the redirector during the initial file open.

• Every 5 seconds, a new file-open is attempted (the client
requests the redirector to exclude currently-open
sources); the resulting server is added to the active
sources. If there are already two servers in the active
sources, it is added to the inactive sources.

• If the redirector returns a file not found, then the next
file-open probe is scheduled for 2 minutes in the future.

35

Monday, October 7, 13

Basic design - IO
request

• For each I/O request:

• Check current quality of each source.

• If a currently-active source has worse quality than an inactive source, swap
the two.

• Randomly swap active and inactive sources with a 1% probability per 10MB.

• Split the I/O request proportionally by volume in two according to the current
active source quality.

• Request is split in two nearly-contiguous chunks; this allows the server to
see sequential I/O if possible.

• Issue the two requests to the active sources. Return result to client if both
succeed.

• If a request fails, move corresponding source to the disabled sources.
Immediately reissue request from one of the inactive sources if possible.
Otherwise, throw an exception.

36

Monday, October 7, 13

Multisource Illustration

Time after startup (s)

Fi
le

 o
ffs

et
 r

ea
d

(M
B)

(one data point per entry in vector read)

37

Read offset versus time, per source

Monday, October 7, 13

Multisource
Performance

• If the redirector picks the optimal site for the single-source case, there is no
performance improvement.

• If the redirector picks a sub-optimal site, we see large improvements by using
multi-source:

• For a client at CERN, reading from Nebraska and DESY, the speedup is 1.37
compared to reading from Nebraska-only.

• Single-source reading from DESY has the same speed as multi-source reading
from DESY and Nebraska.

• If a server stops working - or its performance drops significantly compared to
the other source - multisource will stop using it.

• So - multisource client basically shields us from poor redirector choices and
poorly-performing servers.

• It does not fundamentally make things faster, especially as we are not TCP-
loss-limited on the test connection (Nebraska-to-CERN).

38

Monday, October 7, 13

Conclusions
• We believe acceptable performance over high-latency links enables new use

cases for HEP and decreases time-to-science.

• Default ROOT IO (regardless of whether TTreeCache is used) does not perform
acceptably over high-latency links for our test case.

• We have additional mechanisms to make CMSSW performance acceptable.

• An obvious future step is to contribute these ideas back into the ROOT IO
core.

• The multisource client allows us to avoid the worst problems within the
infrastructure while the job is running - whether they are issues from poor
redirection choices or poor server performance.

• For cases where server performance and selection are optimal, it is
performance-neutral.

• As we do not assume anything is optimal, we hope this will be an important
advance for CMS in Run2.

39

Monday, October 7, 13

