
PHRONESIS, A DIAGNOSIS AND RECOVERY
TOOL FOR SYSTEM ADMINISTRATORS

C. HAEN, V. BARRA, E. BONACCORSI AND N. NEUFELD
christophe.haen@cern.ch

GOALS
Assist the system administrators by pro-

viding a solution to:

• Reduce their workload
• Propose a diagnostic and a recovery so-

lution
• Improve with experience
• Act as a knowledge base
• Act as a problem history base

METHOD SUMMARY
• Linux system diagnoses only
• Generic and non intrusive
• No active monitoring
• Single MAPE-K loop for all systems
• Reinforcement learning algorithm
• Shared Experience principle
• Convention Over Configuration

SHARED EXPERIENCE
This innovative concept consists in

grouping similar systems — two web sites
for example. It reduces the configuration
workload and improves the learning speed
of the Reinforcement learning algorithms by
sharing the knowledge. The configuration
grammar is inspired from the object model
whose inheritance concept is similar.

OVERVIEW

The environment is described in configu-
ration files. A compiler parses them and up-
dates the database without loosing the his-
tory and the gained experience. Phronesis
queries Remote Agents to get information

about a particular file, process or the gen-
eral environment. The interactions with the
user go through a common API. A web inter-
face also allows to modify the content of the
database.

DIAGNOSIS

The list of problems reported by the user
is filtered and sorted based on the dependen-
cies rules between the services. Each service
is then explored in turn, following the ex-
ploration order established by the Reinforce-
ment Learning algorithms. Once a faulty

component is found, a full recovery solution
is offered to the user. Based on user’s feed-
back and on the updated problems list, new
dependency rules are inferred. The whole
process starts again until all the problems are
solved or abandoned.

SIMULATIONS
In order to test the algorithms it was im-

portant to be able to simulate almost any
kind of environment. We developed a com-
plete set of tools to produce Monte-Carlo
simulations. They randomly generate prob-
lems based on user’s input, inject signals to
the Core to fake the remote server queries,
interact with it to confirm or deny its diag-
noses, and produce statistics about Phrone-
sis. Simulations validated the importance of
the dependency rules as well as the Shared
Experience principle. They also confirmed
that the various services’ exploration strate-
gies we considered are equivalent in aver-
age.

LHCB ONLINE
Phronesis is being deployed on the LHCb

Online cluster. Systems under Phronesis’
supervision include the Log Aggregation
Cluster, the Event Filter Software, the Web
Services and the Monitoring Infrastructure.
Phronesis’ diagnoses and recovery solutions
proved to be often correct. Examples are full
inodes, bad mount options, corrupted files,
no disk space left, processes not running or
badly configured. In some cases, Phronesis
missed the root cause of the problems. This
was either due to a situation not forecast in
the design of the code or because of an in-
complete configuration.

OUTLOOK
There is still large room for improve-

ments, both technical and functional. Techni-
cal improvements concern mainly better per-
formance, higher code quality and more sys-
tematic testing. Functional aspects include
an extension of the configuration grammar,
better handling of clusters with spare parts
and dynamic constraints between services.
The plan is to add more systems of the LHCb
Online environment under the supervision
of Phronesis and add coverage for corner
cases. We hope to release it as an open source
solution that the community would pick up
and extend.


