Rucio - The next generation of large scale distributed
system for ATLAS Data Management

V. Garonne, R. Vigne, G. Stewart, M. Barisits, T. Beermann, M.
Lassnig, C. Serfon, L. Goossens and A. Nairz on behalf of the
ATLAS Collaboration

CERN, Geneva, Switzerland

E-mail: vincent.garonne@cern.ch

Abstract. Rucio is the next-generation Distributed Data Management (DDM) system
benefiting from recent advances in cloud and ” Big Data” computing to address HEP experiments
scaling requirements. Rucio is an evolution of the ATLAS DDM system Don Quijote 2 (DQ2),
which has demonstrated very large scale data management capabilities with more than 140
petabytes spread worldwide across 130 sites, and accesses from 1,000 active users. However,
DQ2 is reaching its limits in terms of scalability, requiring a large number of support staff to
operate and being hard to extend with new technologies. Rucio will deal with these issues by
relying on a conceptual data model and new technology to ensure system scalability, address new
user requirements and employ new automation framework to reduce operational overheads. We
present the key concepts of Rucio, including its data organization/representation and a model
of how to manage central group and user activities. The Rucio design, and the technology it
employs, is described, specifically looking at its RESTful architecture and the various software
components it uses. We show also the performance of the system.

1. Introduction

The ATLAS experiment at the LHC is a general purpose particle physics detector designed to
investigate physics at the energy frontier. The Distributed Data Management (DDM) project
manages ATLAS data on the grid and provides functionalities for data placement, deletion and
data access. The current implementation is called Don Quijote 2 (DQ2) and has demonstrated
very large scale data management capabilities with more than 150 petabytes spread worldwide
across 130 sites, and accesses from 1,000 active users. However, DQ2 is reaching its limits in
terms of scalability, requiring a large number of support staff to operate and being hard to
extend with new technologies. The Rucio project is the new version of DDM system services
which will address these issues, support new use cases and cope with the requirements of LHC
Run2 in terms of scalability and the expected huge amount of data.

In this paper we give an overview of the ATLAS Rucio system, covering core concepts in
section 2, its architecture and technologies (section 3). We will then discuss the scalability
requirements of the DDM system and show the performance results obtained during scale test
exercises (section 4). We will then conclude and give our future plans in section 5.

2. Concepts
In this section, we describe the corresponding core concepts Rucio uses to manage accounts,
files, datasets and storage systems.

2.1. Account

The entry point of the system is a Rucio account which can represent individual users, a group
of users or a service like the organised production activity for the whole ATLAS collaboration.
Actions in Rucio are always conducted by a Rucio account. A Rucio user is identified by their
credentials, such as X509 certificate or Kerberos token. Credentials can map to one or more
accounts. Rucio checks if the credentials are authorized to use the supplied Rucio account.

2.2. Data identifiers, scope and metadata attributes
For Rucio, files are the smallest operational unit of data. Physicists need to be able to identify
and operate on any arbitrary set of files. Files can be grouped into datasets (a named set of files)
and datasets can be grouped into containers (a named set of datasets or, recursively, containers).
Files, datasets and containers follow an identical naming scheme which is composed of the
scope and a name, called a data identifier. The scope string partitions the namespace in several
sub spaces. The primary use case for this is to have separate scopes for production and individual
users. The figure below gives an example of an aggregation hierarchy:

HugsContainert

/

prod:Container1
prod:Dataset1 prod:Dataset2 prod:Dataset3
prod:Filel prod:File2 prod:File3 prod:File4 prod:File5 prod:File6

Figure 1: Aggregation hierarchy example

The data identifier status is reflected by a set of attributes. For instance, files have a status
related to their availability and datasets/containers have the open status which means that
content can be added to them.

Metadata associated with a data identifier is represented using attributes, which are key-value
pairs. The set of available attributes is restricted. Some metadata attributes are user settable,
e.g., physics attributes (number of events, run number, run period) or production attributes
(job identifier). Metadata which is not user settable includes system attributes, such as size,
checksum, creation time. For datasets and containers, it is possible that the value of a metadata
attribute is a function of the metadata of its constituents, e.g., the total size is the sum of the
sizes of the constituents.

2.8. Rucio Storage Element

A Rucio Storage Element (RSE) is a repository for physical files. It is the smallest unit of
storage space addressable within Rucio. It has an unique identifier and a set of properties such
as:

e supported protocols, e.g., file, https, srm

quality of service; storage type, e.g., disk, tape

physical space properties, e.g., used, available, non-pledged

a weight value, used for data distribution (see §2.4)
a threshold for deletion (see §2.4)

A set of RSEs can be identified directly by enumeration of their names, or indirectly by a
boolean expression over their attributes. Attributes are key-value pairs, e.g., CLOUD=UK,
Tier=1, T2D=True, MoUShare=15. RSE attributes are used to manage data with replication
rules (see §2.4).

Physical files stored on RSEs are identified by their Physical File Name (PFN). The PFN is
a fully qualified path identifying a replica of a file. PFNs may take the form of file names, URIs,
or any other identifier meaningful to a Rucio Storage Element. The mapping between the LFN
and the PFN is a deterministic function of the LFN, RSE and protocol.

2.4. Replica management: Replication rule, subscription and data deletion

Replica management in Rucio [3] is based on replication rules defined on data identifier sets.
A replication rule is owned by an account and defines the minimum number of replicas to be
available on a list of RSEs. Rules may specify a grouping policy that controls which files are
grouped together at the same RSEs. The list of RSEs can be specified with RSE attributes (see
§2.3).

Rucio processes each replication rule and creates replica locks that satisfy the rule. A replica
lock is defined for a replica on a specific RSE and is owned by the issuer account. A replication
rule can trigger a data transfer prior to the replica lock being satisfied. As transferring a file to
a site can fail, a replication rule has a state to reflect its status. In case a replica on a particular
RSE has no associated replica locks anymore it can be deleted. Locks disappear when accounts
decrease the number of desired replicas in their replica rules, or the whole rule altogether.

For storage accounting, Rucio accounts will only be charged for the files on which they have
set replication rules. The accounting is based on the number of replicas an account requested,
not on the number of physical replicas in the system. Accounting and quota calculations use
the replica locks generated from replication rules. Quotas are constraints on the replica locks,
based on limits set per account.

If the file content of a dataset is widely distributed across many sites this will maximise the
CPU resources that can be used to process this data. If the files are concentrated at one site this
will be optimal for processing which requires the use of many files at once (e.g., merging and
archiving to tape). Rucio uses the dataset/container hierarchy to control how files are grouped
together at sites and offers different levels of grouping, which will affect how the file replicas
in a hierarchy are grouped. Clients should ensure that their dataset/container hierarchies, in
particular the definition of the datasets, are created in such a way as to provide suitable file
groupings for further data processing.

Subscription is another mechanism in Rucio to control data replication. Subscriptions
are used by accounts to generate replication rules based on matching particular metadata
at registration time. A subscription will therefore create replication rules for every new file
matching the criteria.

3. Architecture
The Rucio system is based on a distributed architecture and can be decomposed into four main
components: Server, Daemons, Resources, and User Interface, as illustrated in Figure 2.

e

Rucio Clients | Rucio
_— Storage

\
] [}
] [}
] [}
e N N, Element !
Rucio Server (REST APl and Core Components) 1 (RSE) i
] [}
Authentication o ! [
]
Account Authorization Identifiers Locks] S i
]
) Site :
Meta Permission Quota Transfer 1 !
| —
I
) :
|
Rules Subscriptions Scopes J— :
y 1 |
b <3| ste | |
- N ! |
Rucio Daemons N 2!
] [}
Conveyor Judge Reaper 1 i
(Transfers) (Rules) (File Deletion) I |
Persistence : :
Datab
(Database) Transmogrifier Undertaker : Site :
(Subscriptions) (Dataset | [
deletion) : L . :

Figure 2: Overview of the Rucio architecture

The Rucio clients layer offers a command line client for users as well as application
programmer interfaces in Python which can be directly integrated into user programs. All
interactions are transformed by the client into https requests which are sent to the REST [5]
interface of the Rucio server. Consequently, external programs can also choose to directly
interact with the REST API of the server.

The Rucio server is a passive component listening to incoming queries. It connects several
Rucio core components together and offers a common REST interface for external interaction.
The users with their credential interact first with the Authentication& Authorization component
to be mapped to an account. This protocol follows the Oauth model [8]. The authentication
component checks the used credentials and if they are valid, returns a short lifetime token.
Once authenticated, the users provide these tokens for the next interactions with the system.
the permissions of the account to execute the given request are then checked by the authorization
component.

The Rucio Storage Element (RSE) abstraction layer is responsible for the interactions with
different grid middleware tools which interact with the grid storage systems. It effectively
hides the complexity of these tools and combines them into one interface used by Rucio. The
abstraction layer is used by the clients, the server as well as the Rucio daemons.

The Rucio daemons are active components that are orchestrating the collaborative work of
all the system. The following daemons are part of the Rucio system:

Conveyor is in charge of file transfers.
Reaper deals with file replica deletion.
Undertaker is responsible of obsoleting data identifiers with expired lifetime.

Transmogrifier applies subscriptions on newly created/existing data to generate replication
rules.

Judge is the replication rule engine (see §2.4).

The persistence layer keeps all the logical data and the application states. Rucio uses
SQLAIchemy [4] as an object relational mapper and can therefore support several relational
database management systems (RDBMS) like Oracle, MySQL or PostgreSQL.

4. Scaling and performance
4.1. Requirements and emulation
To evaluate the scalability of the system, the Rucio emulation framework [1] has been developed
to continuously operate performance tests. To emulate Rucio at very high frequencies (multiple
KHz), this framework was designed to be very scalable and modular. For instance the emulation
dispatches correlated use cases, derived from DQ2, in real-time to workers through a distributed
task queue. This technique guarantees the horizontal scalability of the emulation framework.
To define the workload, DQ2 has been instrumented to provide more logging information
about the system usage like the method called or the application identifier. As DQ2 can produce
up to 100GB of ASCII log data per day, the powerful data mining framework, Hadoop [9], has
been used to map-reduce the log data corresponding to long periods.

[PanDA
[l Deletion
Agent
Site Operations Rates
Services Transfer 20 Hz
[l DQ2Clients Deletion 25 Hz
. Undefined Upload 0.04Hz
B Others Download THz
Figure 3: Workload per application Table 1: Requirements at nominal load

The Figure 3 illustrates how the observed workload is distributed over different applications.
PanDA [7] is the workload management system of the ATLAS experiment and is at the origin
of 31% of the load. PanDA is in charge of executing production and analysis jobs on the grid.
It interacts with DDM for the management of the input and output data for job scheduling.
Site-services are the DQ2 components responsible for file transfers. The deletion agents are
dealing with file deletion. The undefined part corresponds to old clients which have not been
updated and did not send the relevant information. We observed about 7% noise and assumed
that this is related to retries of failed calls.

With the API calls executed by the various applications and users, we have been able to
summarize, identify and map the load to distinct use cases, e.g. data discovery for job scheduling.
This results in information like how often an use case is executed, by which application and for
which purposes. With this knowledge, we deduced target numbers for each use case in order to
validate the workload generated by the emulator. We identified various performance indicators
to verify against defined measures and metrics. The Table 1 summarizes the requirements in
term of file transfer, deletion, download and upload rates for the nominal load. These numbers
are derived from the following use cases:

Data export from TO0. Detector data is stored at Tier 0 (CERN) and then exported to Tiers
1 data centers.

Data distribution of the production data. Production data is replicated over the grid.

PanDA user analysis. It represents the user analysis activity. The load is based on the peak
period of February 2013. During this period, we measured in average 400.000 user jobs per
day.

PanDA production. Two different production workflows have been considered: Production
at Tiers 1 sites without the movement of input/output data and production at Tiers 2
including data movement. The reference peak period is April 2013. We observed an equal
repartition in term of number of jobs and created data for the two workflows. The total
amount of jobs per day is 480.000.

Data download. It is mostly downloads done by end-users to retrieve job outputs.

Wildcard /Metadata searches. It represents the searches to discover data.

4.2. Results

The Figures show the results obtained with the emulation framework running the use cases
described previously. For this exercise, we ran the system at the nominal load and then increased
the load by a factor two every few hours (at least 24 hours). The deployment model for the Rucio
server was one node for the server (Intel Xeon CPU L5640, 24*2.27GHz, 48G), another node
for the daemons (Intel Xeon CPU L5520, 8*2.27GHz, 24G) and a dedicated database Oracle
cluster. The database has been populated according to the distribution of data extracted from
DQ2. The data volume reflects the same order of magnitude observed in production and exposes
the same characteristics to provide realistic experimentations. The Table 2 gives a summary
of the data volume pre-filled in the database before the tests. The information about core’s
internal workings is exposed in the highly scalable and real-time graphing system Graphite [6].
In addition to the storage backend, Graphite provides a web-based visualization frontend that
gives immediate feedbacks about where Rucio spends most of its time.

150.0

X1 X2 X4
125.0 l
I
100.0 l h
75.0 ‘
Entities Volume e) . 1 h
Data identifiers 0.5 billion 500 ﬁ"‘“"v’pkl'}ﬂ'k”?* MW N '(“ ,}\’ \ N
Content 0.6 billion A “
Subscriptions 100 | '&\h{ﬂ ’UW 1 MM’M """"""""""
Replication rules 25 millions ‘l
Locks 1, 7 billion ?]8[14 08/15 08/16
File replicas 1 billion B Target
Deletion rate

Table 2: Volume of data pre-filled in the Figure 4: Deletion rate of file replicas with an

database before the tests increase of the load

Rucio scales at nominal load and has operated smoothly with the desired level of transfers
and deletion. The Figure 4 shows the evolution of the deletion rate with an increase of the
load. The system has been able to sustain the target value rate for deletion (20 Hz) during
hours and gives some good response with higher load. We registered a peak deletion rate at 125
Hz without the creation of any backlogs. To focus on the Rucio performance, the interactions
with the storage have been emulated by using a mock implementation of the RSE component
(see § 2.3. The Figure 5 illustrates the draining of transfer backlog. The conveyor daemon

has been interfaced with the WLCG (Worldwide LHC Computing Grid Project) File Transfer
Service 3 (FTS3). It has been able to submit to FTS3 transfers at a rate of 240 Hz. During this
scaling test, the conveyor polled the status of each individual file transfer to know when they are
complete (green curve on the plot). In the future, this status check will be based on notifications
which is more efficient and scalable. The Figure 6 illustrates the metadata searches done by
end-users. We can see that independently of the number of results returned the performance
stayed stable (in average 0.15 ms per result).

025

T i,
, bl | ’ || ﬂ h 6 |l)" MH f‘“l‘

xR "‘“ !‘\' “.‘ M‘w”‘."l‘ il M‘ lw J L. | .
”i[” H I\ HF“’ L’ I «W il i l’;'w b J» lw »% | ‘ H

8 A -

12:00 13:00 14:00 15:00 16:00 17:00 10:00 12:00 14:00 16:00
M submit_request_nominal_1x [l submit_request W query_request M List DIDs with Metadata

milliseconds

Figure 5: Transfer rate when draining a Figure 6: Evolution of the response time
backlog for metadata searches (normalized by returned
results)

The Rucio load on the database is I/O bound. At nominal load, we measured a throughput
of 20 MB per second with a total number of 900 I/O operations per second. With four times the
nominal load, we observed after few hours an increase of the database latency, some backlogs of
requests and degradation of the response times. The CPU used on the database stayed relatively
constant while the user and commit I/O went up to 40 MB per second conjointly with the load
increase. It was hard to understand the behavior in details as we learned that at the same time
the database got hardware problems with impact on the commit latency. But the Rucio nodes
behaved well and we did not see any issues on the server and daemon node.

5. Conclusion

In this paper, we have shown that we have a complete framework for continuous scale exercises
and that Rucio with its concepts and technologies scales well at nominal load. The nominal load
defined is based on peak periods of the year 2013. Our tests have shown the critical importance
of the database and our plans are to continue the stress-test of the system with the new database
production hardware scheduled for end of 2013. We are now also involved on how Rucio will
be integrated by external ATLAS applications like the PanDA system. For this purpose, we
have provided an integration testbed to gradually commission Rucio functionalities and the
integration with external applications and services like the new WLCG File Transfer Service.
We are proposing strategy [2] to roll-out the system during the first LHC long shutdown and
how the transition from DQ2 to Rucio will be handled. The new version of DDM, Rucio, is
scheduled for beginning of 2014 to take ATLAS forward into the next years of high luminosity
LHC running.

References

[1] M Barisits, C Serfon, V Garonne, M Lassnig, G Stewart, T Beermann, R Vigne, L. Goossens, A Nairz, and
A Molfetas. Ddm workload emulation. Journal of Physics: Conference Series, to appear, 2013.

[2] M Barisits, C Serfon, V Garonne, M Lassnig, G Stewart, T Beermann, R Vigne, L. Goossens, A Nairz, and
A Molfetas. Dq2 to rucio renaming infrastructure. Journal of Physics: Conference Series, to appear, 2013.

[3] M Barisits, C Serfon, V Garonne, M Lassnig, G Stewart, T Beermann, R Vigne, L Goossens, A Nairz,
and A Molfetas. Replica management in rucio: Replication rules and subscriptions. Journal of Physics:
Conference Series, to appear, 2013.

[4] Rick Copeland. Essential sqlalchemy. O’Reilly, first edition, 2008.

[5] Roy T Fielding and Richard N Taylor. Principled design of the modern web architecture. ACM Transactions
on Internet Technology (TOIT), 2(2):115-150, 2002.

[6] Graphite Scalable Realtime Graphing, 2013. http://graphite.wikidot.com/.

[7] A. Klimentov, A. Vaniachine, Kaushik De, T. Wenaus, S. Panitkin, Dantong Yu, Gergely V. Zaruba, and
M. Titov. Abstract: Panda: Next generation workload management and analysis system for big data. In
SC Companion, pages 1521-1522. IEEE Computer Society, 2012.

[8] Barry Leiba. Oauth web authorization protocol. IEEE Internet Computing, 16(1):74-77, 2012.

[9] Tom White. Hadoop: The Definitive Guide. O’Reilly Media, Inc., 1st edition, 2009.

