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Abstract. The “ATLAS Metadata Interface” framework (AMI) has been developed in the 
context of ATLAS, one of the largest scientific collaborations. AMI can be considered to be a 
mature application, since its basic architecture has been maintained for over 10 years.  
In this paper we describe briefly the architecture and the main uses of the framework within the 
experiment (TagCollector for release management and Dataset Discovery). These two 
applications, which share almost 2000 registered users, are superficially quite different, 
however much of the code is shared and they have been developed and maintained over a 
decade almost completely by the same team of 3 people. We discuss how the architectural 
principles established at the beginning of the project have allowed us to continue both to 
integrate the new technologies and to respond to the new metadata use cases which inevitably 
appear over such a time period.  

1.  Introduction 
This paper is about the development of the ATLAS Metadata Interface (AMI) framework [1]  over the 
last decade. This framework is designed for generic cataloguing using relational databases. It is the 
basis of two tools which are part of the offline software of the ATLAS experiment at CERN [2].  AMI, 
the first and eponymous tool, is used principally to catalogue the datasets available for analysis.  The 
other tool, named TagCollector, is a highly specialized application which is part of the management of 
the various releases of ATLAS software. 

The functions provided by these tools will only be briefly described here, as each tool has already 
been the subject of previous publications [3][4][5]. Rather we will concentrate on the history and 
evolution of the project. The realization that the AMI framework is one of the longest surviving 
software projects within the collaboration was the catalyst for this approach. It is time to look back and 
record how the software has evolved over its lifetime, attempting to extract some of the principle ideas 
behind what we hope is a successful contribution to ATLAS. 

Perhaps it should be mentioned that one of the specificities of the AMI Framework is that it was 
developed principally by a small team of non-physicist software engineers based at the LPSC 
Grenoble, France. In a recent and insightful article [6]  the author states that HEP has “a complicated 



 
 
 
 
 
 

and not very efficient relationship with Software Engineering”.  Although we cannot deny some 
periods of frustration over the last ten years, we do believe that a good modular design, the basis of 
our framework’s structure, has served us well. Professional developers and physicists can work 
together!  Not surprisingly however, the majority of our conclusions do echo those of the author of [6]: 

• The importance of “mutual respect, dialogue and understanding”  
• The importance of Agile [7] technologies 
• The importance of a fast reaction to a bug or to a new use case.  

In what follows we will begin by outlining the chronology of the project and describe the two 
software products. The main part of the paper will describe the underlying architectural choices we 
made at the beginning and how they have allowed us to adapt successfully to the inevitable changing 
and expanding demands of AMI and TagCollector users over ten very exciting years in the life of the 
ATLAS experiment. In the following section we will describe the hardware environment of the 
applications, and the working practices of the development team, in particular the tools used. Finally 
we will outline the major developments underway during the first long shutdown of the CERN Large 
Hadron Collider (LS1), and discuss the potential for the use of the framework in non-ATLAS 
contexts. 

2.  History 
The first prototype of AMI was an electronic bookkeeping application for the ATLAS Liquid Argon 
detector component in 2001. Subsequently the work was adapted for the bookkeeping of the ATLAS 
data challenges. In parallel, the Grenoble team was working on TagCollector, a rather different 
application for release management. It was realised that since both applications used databases, both 
had web interfaces and they would be both used by ATLAS collaboration members, much of their 
underlying software could become common, and the AMI Framework, designed and developed 
between 2002 and 2004, was the result. 

In 2006, following a review by the ATLAS collaboration, the AMI framework was chosen for 
physics metadata catalogues. This was the starting point for the expansion of the Dataset Discovery 
application. 

During the same period TagCollector has also been considerably enhanced in order to deal with the 
increasing complexity of ATLAS releases. 

3.  Architecture and technology 
The most important architectural and technological choices made for the AMI framework were guided 
by the context of very large and widely distributed scientific community over at least a decade.  

We chose to implement a central web service used by lightweight clients. The enormous increase in 
the number of web applications in the 2000s comforted our choice and many of the technologies we 
decided to use, like Java/Apache Tomcat or XML/SOAP have become well supported standards and 
have facilitated the integration of AMI in GRID middleware.  

AMI has a multi-tier client–server architecture in which presentation, application processing, and 
data management functions are logically separated. This model favors the creation of flexible and 
reusable applications because the modification or addition of a specific layer does not affect the rest of 
the application. 

3.1.  Use of the Open-Closed Principle 
We have tried to adhere to the Open-Closed Principle (OCP) [8] as far as possible. Software entities 
should be open for extension, but closed for modification.  To this end JAVA was chosen for our 
server side software. It is object oriented, portable and well adapted for both web applications and 
database connectivity.  Encapsulation limits overall system complexity, and thus increases robustness, 
by allowing the developer to limit the inter-dependencies between software components. 

To ensure OCP within our layered architecture we introduced dependency injections using some 
“inversion of control” design patterns, in particular the “bridge” or “plug-in” pattern [9] for 



 
 
 
 
 
 

communication with external tools, notably with databases and version control engines. This pattern is 
a very good example of encapsulation; the plug-in architecture completely hides the internal methods 
and access is only allowed through the interface. 

3.2.  Database Schema Evolution 
Schema evolution is inevitable during the application life cycle, therefore it must be considered when 
designing a database application. AMI compatible databases are constructed with a description which 
allows the code to discover the structure and to construct ad hoc SQL queries.  

It has never been necessary to copy old AMI data to a new schema. Old data stays in the schema 
where it was written. The framework can construct threaded queries over both old and new metadata 
schema taking into account the evolution of ATLAS data 

It is sufficient to add a description of a database schema to AMI to be able to browse the database 
tables in the AMI web interface. The schema description is internal for the AMI native catalogues, and 
external for other databases. This feature is exploited in our web interface by providing links to non-
AMI applications such as the ATLAS production system database. 

3.3.  Other Characteristics of the AMI framework 
In this section we describe the architectural decisions which have given the framework both strength 
and flexibility. 

3.3.1.  Database Connections. AMI uses indirection for database connections. The physical 
connection parameters are held in a central AMI database which we call the "router". Applications 
connect using only logical connection parameters. Thus database connections are completely 
transparent for users. 

3.3.2.  AMI user management. Users are managed centrally as shown in figure 1. Several 
authentication mechanisms are supported, including Virtual Organizations (VOMS) [10]. Some AMI 
roles are directly available to users with a VOMS role in ATLAS. 

router database

application database

tables

users
roles commands

external database

AMI
metadata tables

AMI
metadata

login

certificate

VOMS roles

databases

 

 
 

 
Figure 1. The users are mapped to a set of 
roles; each role is linked to a set of 
commands. The command execution may 
be limited to a sub-set of catalogues. 
Users must possess a certificate known to 
VOMS, but as long as these credentials 
remain valid they may also authenticate 
with a username and password. 
AMI also has a method for VOMS proxy 
forwarding, so that GRID middleware 
operations can be performed by AMI for 
users. This is typically the creation of 
dataset containers. 

3.3.3.  The command engine. The handling of commands is an extremely important part of the AMI 
framework. An AMI command can invoke a set of database operations on geographically distributed 
and different RDBMS (See figure 2). 

Figure 3 shows the treatment of commands expressed using a generic Metadata Query Language 
[11] which is parsed and transformed to the appropriate SQL using the database descriptions described 



 
 
 
 
 
 

in section 3.2.  Atomic transactions are implemented using a hierarchical pool of individual database 
operations as shown in figure 4. 

The native command output format is XML. It can be parsed to produce HTML, JSON or 
CSV/Text output. In order to speed the transformations we implemented an internal XSLT cached 
pool.  
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Figure 2. Gives an overview of the interaction 
of AMI layers. Client commands arrive either 
from a browser or the python client. After user 
authentication and authorization the command is 
executed by the command engine, possibly 
using several RDBMS through the transaction 
and the connections pools. Connections are 
made using the physical connection parameters 
in the router. 
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Figure 3. Outlines the transformation of a query 
in MQL to catalogue specific SQL queries, using 
database schema introspection, the results are 
aggregated to produce a simple row data output. 
This mechanism can be used as an abstraction 
layer in case of database schema evolution.  

 Figure 4. Transaction pool supporting a set of 
transactions. Each AMI transaction manages a 
pool of RDBMS connections and ensures 
atomicity at the command level. A command 
can contain calls to other commands belonging 
to the same transaction. 
 

3.3.4.  Web Applications and Web Service.  AMI web applications are based on HTML/JavaScript 
produced by XSL transforms of the XML output of commands. We use Bootstrap, a standard CSS 
library [12] for formatting. AMI has its own AJAX command engine.  

The AMI Web Service is standard SOAP [13]. The main client in HEP is pyAMI, a python client 
with a layer adapted for dataset discovery. The client is part of the ATLAS release and is supported by 
the AMI team. The pyAMI API allows ATLAS users to integrate calls to AMI in their own python 
scripts. 



 
 
 
 
 
 

One of the advantages of the standard web service architecture is that most modern languages can 
produce clients based on a Web Service Description (WSDL). Users are not dependent on clients 
provided by the AMI team; clients have been produced for Ruby and GO for example. 

4.  Production environment 
The AMI infrastructure (see figure 5) is designed to meet strong constraints of service availability and 
response time as befits an application with almost 2000 users situated all over the world.  
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Figure 5. A summary of the 
deployment of AMI at the IN2P3 
computing centre and at CERN. 
Users connect through Tomcat 
using either web browsers or the 
python client. 

The task servers are instances 
of AMI running independently, 
used for filling the AMI databases 
from external sources, and for 
other recurring tasks. 

The CERN replica is a read 
only instance, but it could become 
the production site in case of 
major problem at CCIN2P3. 

 
The main site (https://ami.in2p3.fr), at the CCIN2P3 Lyon France, is hosted on an Apache cluster 

of 12 machines. It is configured to do load balancing using the mod-proxy module. User requests are 
dispatched over 4 tomcat nodes. 

Additional redundancy is provided by a Tomcat server running on a virtual machine at CERN 
(https://atlas-ami.cern.ch), which accesses the read-only replica of the ORACLE database described in 
the section 4.1.   

4.1.  Databases 
In this section we give some details of the AMI databases. Currently AMI uses both Oracle and 
MySQL hosted at the French Tier 1(CCIN2P3 Lyon). MySQL is used for TagCollector and some 
legacy dataset catalogues; the rest, and by far the larger part, uses Oracle. Each component has an 
architecture that designed to be scalable and robust. 

The Oracle databases are hosted on an Oracle cluster of 4 nodes whereas the MySQL databases use 
a cluster with 2 nodes.  All the database servers have redundant power supply and dual attachment on 
a SAN of 6 TB in RAID.  

Over the past few years AMI usage has greatly increased, in 2010 only 40 GB were used against 
400 GB in 2013. Data size and CPU usage often go together; in 2010 AMI only consumed around 3 
percent of CPU in periods of high activity, but at present the CPU usage is on average 30%. In the 
near future, the CCIN2P3 will provide Oracle’s standby database solution, used for disaster recovery 
and high availability. In case of crash or maintenance of the production database, all users could be 
automatically redirected to the standby database without any human intervention. 

An additional level of security is provided in collaboration with the CERN IT. The mechanism 
used is based on the Oracle stream feature by capturing all updates run at CCIN2P3 and applying them 
to the CERN database. Oracle replication is unidirectional and writing on the CERN side is not 
authorized. A switch of master databases would take only a couple of hours. 



 
 
 
 
 
 

5.  Development methods and tools 
At present the AMI project contains about 1200 Java classes, JavaScript, python and XSLT files. The 
team has 3 permanent developers and some collaborators who participate in the development of 
specific parts.  

It was essential to establish a framework for efficient collaboration. To this end, we chose to use 
the following “standard” tools, which can often be linked to one another. 
 
Subversion (SVN) code repository & version control https://subversion.apache.org 
Eclipse integrated development environment http://www.eclipse.org 
Firebug web development tool (JavaScript debugger) https://getfirebug.com 
Twitter Bootstrap CSS framework for the application web pages  http://twitterbootstrap.org 
Sphinx pyAMI documentation generation http://sphinx-doc.org 
Redmine project management http://www.redmine.org 
Jenkins continuous integration & deployment http://jenkins-ci.org 
Joomla content management – used for the portal pages. http://www.joomla.org 
 
We focus here on two important points: 

• Project management: keeping track of all issues (bugs and feature requests) and to have a 
global vision of the future evolution. 

• Deployment procedure:  linking the resolution of bugs or introduction of new features with 
code and release versions. 

5.1.  Project Management with Redmine 
For project management we chose to use a forge, “Redmine”, a collaborative tool is installed at 
CCIN2P3 and shared by several laboratories of the IN2P3. This tool allows: 

• Keeping a record the history of tasks such as bug fixes or feature requests. 
• Tracing which source code was modified and why, by linking our SVN source code repository 

to a source code revision or to a specific ticket state change.  
• Managing requests by setting priorities and categories and assigning them to a team member. 

Standard project management features such as the production of Gantt charts, are available. 

5.2.  Deployment with Jenkins 
A rapid reaction to bugs is essential. This means that not only must the bug actually be fixed in the 
code, but also that the release and deployment strategies must be appropriate. We decided at the 
beginning of the project that our clients should be light, with a long client release cycle. The bulk of 
the work is executed on the servers. A classic “release schedule” is too unwieldy for this model so we 
decided to switch to a continuous release strategy.  

We chose the tool “Jenkins” [14] a continuous integration server, to automatize application 
deployment. Jenkins is a system that allows us to build and deploy "on the fly" and “on demand” 
versions of our applications on our servers. It keeps the history the changes were made, and where and 
when the changes were deployed. The tool is accessible via a web interface and so allows developers 
to deploy from every place with an internet connection. 

5.3.  Programming Techniques 
To extend development responsiveness and reduce maintenance cost we apply the Agile model [7] to 
our software development management. This model is well adapted to a project with a long life cycle 
and frequent feature requests. Some important points are:  

• avoiding programming of features until they are actually needed 
• programming in pairs 
• including unit testing 

https://subversion.apache.org/
http://www.eclipse.org/
https://getfirebug.com/
http://twitterbootstrap.org/
http://sphinx-doc.org/
http://www.redmine.org/
http://jenkins-ci.org/
http://www.joomla.org/


 
 
 
 
 
 

6.  Future and prospective 
The LHC is currently stopped for a major upgrade, and is scheduled to restart at the beginning of 
2015. During this time many operations will undergo major changes. The biggest changes that are 
needed in the AMI framework are in fact linked to changes elsewhere.  

The ATLAS production system, one of our main sources of metadata, is being rewritten, and in 
consequence the data loading tasks must be adapted. 

 A more important set of changes required will come from the redefinition of the ATLAS dataset 
nomenclature, where AMI plays an important role as the repository of reference tables and software 
configurations. 

We know also that the shutdown will generate new requests for very specific metadata functions 
from users, such as the Monte Carlo group. 

The TagCollector web pages will be the subject of a review, leading to implementation of a 
complete new version. ATLAS release management policy has considerably evolved since the last 
version was implemented. The new TagCollector will take advantage of the dynamic pure 
JavaScript/Ajax interface developed for the Dataset Search in 2013. 

We do not foresee changes to the lower level AMI framework beyond some optimization of code. 
However we have already started to implement some greatly improved performance monitoring tools 
which have already proved fruitful, for we have been able to understand some performance 
bottlenecks, and also study some user work flows. 

Another interesting prospective is to better package the AMI framework so that it could be more 
easily shared with other experiments. 
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