ComPWA A Common Partial Wave Analysis Framework for PANDA

Mathias Michel Helmholtz Institute Mainz

On behalf of the ComPWA group

CHEP 2013, Amsterdam October 15, 2013

Hadron Spectroscopy

understanding how hadrons are built

What happened here? K

K

 K^+

 π°

K

What you see is

always the same

Resonances

Resonances

Amplitude Analysis

incoming planar wave

K

KY

 π^{0}

K

Example: partial waves for inelastic scattering

The measured cross-section relates to the scattering matrix $\frac{d\Omega}{d\theta} = |(f(\theta))^2|$

Compose planar wave in terms of partial waves with given I

$$e^{ikr\cos(\theta)} = \sum_{l} (2l+1)i^{l}j_{l}(kr)P_{l}(\cos\theta)$$

Calculating the scattered wave (outgoing - incoming) $f(\theta) = \frac{1}{k} \sum_{l} (2l+1) \frac{\eta_{l} e^{2i\delta_{l}} - 1}{2l} P_{l}(\cos\theta)$

ComPWA Challenges

PANDA physics program

 \rightarrow various models needed

$\overline{p}p$ initial state at 1.5 – 15 GeV/c

- → high initial spin (\approx up to 6-7)
 - \rightarrow many possible waves
 - → many parameters

High statistics

→ parallelization needed

Detector effects

→ distorted phasespace

Coupled channels

→ different efficiencies

Quality assurance

Mathias Michel, HI Mainz

Why a *common* framework?

PWA tools on the market are specialised → not extendible to PANDA

PANDA is still years from data taking
 → start now and we could have a well tested and reliable software ready

comparison of results from different experiments possible

ComPWA Framework

ComPWA Framework

Data & MC

represents measurements local and global values multiple experiments (at once) caching

Physics & Models

calculates amplitudes

various formalisms (helicity) various models (isobar) simple ways to add new modules (wrapper)

Estimators

veight

amplitude

likelihood

calculates discrepancy from model to data

event

functiontree

combined fits and re-fits

documentation of procedure

Optimizer

varies model parameter

interface to **external** libraries various algorithms (gradient decent, genetic, swarm)

flexible strategies

ComPWA Framework

FunctionTree

$$I = \left| \sum_{n} T_{n} r_{n} e^{i \varphi_{n}} D_{n} \right|^{2}$$

T = Breit-Wigner FunctionD = D-Wigner Functionr = Strength of Resonance $\phi = Phase of Resonance$

$J/\psi \to y\pi^0\pi^0 \, Model$

 $I = \left| \sum_{n} T_{n} r_{n} e^{i \varphi_{n}} D_{n} \right|^{2}$

J/ш

T = Breit-Wigner Function
D = D-Wigner Function
r = Strength of Resonance
φ = Phase of Resonance

$J/\psi \rightarrow \gamma \pi^0 \pi^0 \text{ phasespace}$

$J/\psi \rightarrow y\pi^0\pi^0$ first fit

$J/\psi \rightarrow \gamma \pi^0 \pi^0$ ratio

18

Status

Outlook

Language and Dependencies

C++11 Boost Boost.Build

Optional External Packages Used

Root qft++ Minuit2 Geneva <

Documentation Doxygen Doku Wiki

Version-Control Git About Geneva

S

Geneva is available as Open Source software (AGPL v3) from http://www.launchpad.net/geneva, and is also supported commercially by Gemfony scientific http://www.gemfony.eu

This is work in progress!

Biggest ToDo's

go public controls and configuration documentation module more physics cases

Contact

michel@kph.uni-mainz.de