
LHCb

 LHCb GRID SOLUTIONTM

Subworker n

Why parallelization?

Moldable Job Model

Preparing the Gaudi-Framework and

DIRAC-WMS for Multicore

Job Submission

Current GaudiMP implementation

The following diagrams shows, when a parallel job with 8 workers outperforms multiple single instances, while the memory limit is continuously decreased to

2, 1.5, 1 and 0.5 GB.

Future Work

Speedup

Speedup is limited due to:

 Number of events

 Serialization

 Communication overhead …

The larger the degree of parallelism the better the memory sharing and the

worse the speedup. Prediction of speedup via the Downey speedup model:

A = average parallelism

σ = variance in parallelism

Those parameters indicate when cores cannot be used efficiently any

longer by an application.

12

12

1

2121

21

An

AnA

An

A

nA

An

nA

An

nS
)/()/(

/)(

)(

0

5

10

15

20

25

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

S
p

e
e

d
u

p

Parallel Simulation

σ=0 σ=∞ A=21.9 σ=0.85 measured

Reader Writer Worker

Subworker 2

Fork

Options:

1. Assign each job the maximum number of available processing units

 large loss due to non linear speedup.

2. Assign each job only one processing unit

 optimal per job efficiency

3. Assign each job a minimum partition size (defined by memory

demand) and mix jobs

Scheduler defines degree of parallelism for each job

 Taking into account characteristics of WNs:

 Current workload

 Hardware configuration and CPU architecture

 Scaling behavior

Aim of a moldable job scheduler:

1. Assign cores such that the least amount of CPU time is wasted due

to non linear speedup

2. Modify degree of parallelism of certain jobs if this improves the

overall utilization

The aim is to optimize the LHCb grid jobs in respect to memory and

runtime what can be done at the level of:

• Operating system (KSM, x32, auto-vectorization...)

• Software (Late forking …)

• Scheduling (Mix jobs in an appropriate way…)

State of the art:

- Lower memory ratio on future manycore system

- High memory demand of LHCb applications

- Concurrent access to system resources.

Workload Management System DIRAC must be extended by:

• Self learning algorithms, which gain knowledge about WNs and about

 scaling behavior of jobs

• Scheduler, which optimizes the overall utilization

Event parallelism:

 Based on processes due to Python GIL

 Serialization of objects from Transient Event Store (Shared memory

 cannot be used due to virtual tables)

 Simulation: Reader generates random seeds in order to guarantee

 reproducibility

 The more events the better the speedup becomes. However, there is an

 upper limit

 GaudiMP allows a transparent usage of the applications

0,4 0,41 0,41 0,4
0,35

0,41 0,41 0,41 0,4

0,23

No Limit 2 GB 1.5 GB 1 GB 0.5 GB

Throughput (events/s) - Reco

GaudiMP Gaudi Multiple Jobs

1,07 1,07 1,07 1,07

0,88

1,14 1,13 1,07
0,99

0,37

No Limit 2 GB 1.5 GB 1 GB 0.5 GB

Throughput (events/s) - Stripping

GaudiMP Gaudi Multiple Jobs

Go Parallel
Share datasets and reduce memory

Coordinate access to data, disk and network

Shorten job execution times

Subworker 1

Reco jobs executed with 4 workers on CERN cloud infrastructure:

0

5000000

10000000

PSS

RSS

Virtual Memory

M
e
m

o
ry

 i
n

 k
B

30% reduction of memory

N. Rauschmayr on behalf of the LHCb Distributed Computing Team

