@
Synergia-CUDA

GPU Accelerated Accelerator Modeling Package

Qiming Lu & Jim Amundson
Fermilab

] ":‘a‘b}f& |at10ﬂ’ —

» Sing é—partlcle dynamics

« Multi-particle dynamics where the particle-
particle interactions are important :

Space charge [beam-beam interaction /
electron cloud [wakefields

+ Parallel, 3d space charge Particle-in-cell (PIC) code for very large
scale accelerator simulations

+ ~ 100 million to 1 billion particles

2

i : s
$-5h S B

s for PIC

parallellzatlon and optimizations for PIC algorithm

"/_-" F|ne IeveI (thread) parallelization using CUDA
* Results and conclusions

particles

Interpolation of the
fields from grid points
to particle positions

Integration of the
equation of motion

Electric field

Electric field

Charge density

Poisson solver using
convolution method

From the scalar field
then solve the
electric field

e MPI/ dlstrlbuted memory parallellsm Is
still the only choice at high level

Task-1 Task-2 Task-3 Task-4 Task-N

* Randomly distribute particles into MPI tasks

* Each task has a duplicated spatial domain
)

Task-1 Task-2 Task-3 Task-4 Task-N

* Distributed charge deposition

local-rho

-
P

Global-rho

* Collecting local charge densities via
MPI_Allreduce()

—n\\v//.—»'.—\
XS / \p—

TS
- \) | “ Ké

Global-E, ,

MPI
Distributed FFT Phi->E, , , Allgather

* Spatial decomposition in field solver
* Global-rho -> phi -> local-En -> global-En

8

particles

V'

Task-1

particles

vl

Task-2

particles

v-

Task-3

Apply Kicks

GPU / Multi-core CPU /
Xeon Phi

CUDA/OpenMP threads =\
& e

i

)

o

N

T

l-l

Lu" N" H"
N

gais

AENEEEEENR"
AEEEEEEE-—
AEEEEEEEE—

Task-1 Task-2 Task-N
MPI Task

* Hybrid = high level MPI + share memory parallelism at finer granularity
* Interchangeable computing kernels — possible for heterogeneous computing

o)

CUDA

L N
N =

S e \:.' X
e e S \‘t—‘? & .
h volume of data exchanges

: ions and distributions, etc.

Field Solver 1
Field Solver 2
Field Solver ...

Field Solver n

Allgather MPI_WORLD

Have redundant field solver on every computing node to reduce the
complexity of communication, and also keep data exchanges within the node

boundary 1

hread Paratletization of PIC

-

'.',.,.A'"v..>"v.r, I T
unch

Multi-threaded parallel reduction

2. Chargé deposition:

* One macro particle can contribute up to 8 grid cells

n

Collaborative updating
algorithm: An interesting topic,
will talk more about it later

Py, w)= [[|_p(x.y.2)e” " dxdyds
Guv,w)= [[[Glx.y,00e D dxdydz
P(u,v,w) = P, v, w) x G(u, v, w)

O(x,y,2) = ”L O(u,v,w)e” ™ dydydw

13

Independent and easy parallelization
with CUDA / threads

Convolution method: FFT

zation of PIC

o, T e, T o e T R
N~ o e E S - %

E.(x,y,2)=-0¢(x,y,2)/0x
E (x,y,2)=-0¢(x,y,z)/dy
Ez(x,y,z) =-d@(x, y’Z)/aZ

- o
~

-
—

Blockldxi‘
HEEEEENEEEE

* Be careful with memory access pattern for better cache efficiency
* CUDA can use shared memory to halve the global memory access

6. Apply kick:

* Advance the position and momentum for each particle in the bunch

* Keep particles sorted to mesh grids for better data locality and
grouped access of Ex, Ey, and Ez

14

nared viemory

b

=

~Collaborative updating in shared memory
needs proper synchronization or critical
region protection

Due to enormous number of particles,
collision-free deposition is preferred

CUDA OpenMP

* No mutex, no lock, no global sync * #pragma omp critical
* #pragma omp atomic
* Atomic add - yes, but not for double
precision types * Both very slow

15

Parallel reduction Each thread has a duplicated spatial grid,

and charges will be deposit to that grid only

Parallel reduction among all n-copy of spatial grids

High memory usage

Limited thread concurrency
Reduction overheads increases with
number of threads

_ Collision-free
Minimum overhead at low thread
Advantages RaS

16

2. Deposit based on color-coded cells
in an interleaved pattern (red-black)

R i .{:") & . e
- 1. Sort particles into their

corresponding cells

Parallel bucket sort (concurrency ~ number of cells)
Indexed list for quick accessing particle data and reduced memory

movement

17

Iteration_1
Iteration_2

Iteration_3

Voo

Iteration_4

Significant overhead
for sorting particles when
thread counts are low

18

Collision-free

High thread concurrency, very good scalability
Scalable sorting overhead

Fixed memory usage

Better data locality at moving particles

Charge Deposition in Shared Memory
Comparison

—_
»
N—"
o
Rel
=1
=
[}
2}
o
2
[0}
£
|_

Thread scaling comparison of
distributed vs. interleaved deposition

—&— Distributed Deposition
—6— Interleaved Deposition

4 8

Number of Threads

Distributed deposition :
suitable for low thread counts, such as
OpenMP for multi-core CPU

Interleaved deposition :

suitable for high thread counts and limited
memory capacity, such as GPU and Intel
MIC

Synergia on GPU
Performance benchmarks

Comparison of CPUs and GPUs

Xeon X5550
Wilson Cluster
Tesla C1060 x1
Tesla C1060 x4
Kepler K20 x1
Kepler K20 x4

]
O
=
a
|
(]

8x speed up on 1xTesla
20x speed up on 4xTesla

23x speed up on 1x Kepler
sox speed up on 4x Kepler

Propagate time (s)

A single Kepler outruns a
Xeon cluster with 16 nodes
and 128 cores

All use double precisions

—1. Intel Xeon X5550, single process @ 2.67GHz;
—2. NVidia Tesla C1060, 30 streaming multi-processors @ 1.30GHz in a single GPU
—3. Nvidia Tesla C1060 x 4

Bunch.Convert

Bunch.Stat

Charge deposition

Green funciton

Poisson solver

Electric field

Apply kick

Synergia on GPU
Multi-GPU Scaling on C1060

Tesla C1060 Scaling

propagate

- diag_step

diag_turn

- fast_mappir
- convert_sta

cuda_init
deposit_
green_fn

- phi2_fft
- get_e_field
- apply_kick

3 (1x3)

of GPUs, (nodes x GPUs/node)

4 (1x4)

One field solver perTesla
GPU card, therefore the
Poisson solver does not scale

Synergia on GPU
Multi-GPU Scaling on K20

Kepler K20 Scaling

propagate
diag_step
diag_turn
fast_mapping
apply_kick
deposit_
allreduce
convert_state

- cuda_init
- get_e_field

green_fn
phi2_fft

4 (2x2)

of GPUs, (nodes x GPUs/node)

6 (3x2)

2x Kepler K20 per node

Communication spikes when
multiple nodes are used

