
Parallelization of particle
transport using Intel® TBB

R. Brun1, F. Carminati1, A.Gheata1, S. Wenzel1, J. Apostolakis1, E. Ovcharenko2, S. Belogurov2

1 – European Organization for Nuclear Research (CERN), Geneva, Switzerland
2 – Institute for Theoretical and Experimental Physics (ITEP), Moscow, Russia

1) Manually-written concurrent queues
featuring locks are implemented using
tbb::concurrent_bounded_queue

2) Manually-written per-thread data
containers are implemented using
tbb::enumerable_thread_specific

3) No direct thread handling – tasks are
created and spawned to
tbb::task_scheduler which cares about
mapping them to threads

4) Some operations using locks are
reimplemented using tbb::atomic

- Prioritization of events is implemented using double-ended feeder queue. Baskets that
correspond to priority events are pushed to the front which allows worker threads pop
baskets from the front without knowing whether the basket is prioritized or not.

- Only one thread works with the “global” container of tracks so it is safe without locks.

- A propagation task has a priority flag as a parameter. It pops either from a
priority feeder queue or from a normal feeder queue depending on the flag
value. A dispatcher task has the number of collections to pop as a parameter.

- To allow several dispatcher tasks to work with the global container of tracks,
classic locks are used to put some operations into critical sections.

Numerous factors like hardware evolution, rising requirements to the speed of simulations and a
race for cheaper computations stimulate the development of efficient particle transport codes
that make use of all performance dimensions on contemporary and future computing
architectures. One particular effort towards this goal was initiated by the Geant-Vector prototype
project at CERN, and a first prototype exploiting thread parallelism on a track level was presented
at CHEP2012. [1]
The work presented here is dedicated to moving the existing prototype to the task-based schema
by using Intel® Threading Building Blocks (Intel® TBB). One of the reasons for choosing Intel® TBB
is the ability to provide as many dispatchers as needed by the data workflow which follows
naturally in the task-based implementation. This feature is intended to overcome the potential
bottleneck on many-core architectures and result in better scalability comparing to classic thread-
based programming. Also Intel® TBB principle of scheduling tasks which is designed to reuse
cache fits well to the basket-based propagation where locality of data and instructions is needed.

The basic entity for parallelization is a basket – a group of tracks coming from
different events such that several baskets are propagated independently. One
thread is working at one basket at a time. There can be different criteria of
grouping tracks into basket. So far only a geometry criterion is implemented –
tracks in one basket are in one logical volume.

There are two main levels of parallelism the prototype aims for:
1) Thread parallelism. Basket management and mapping baskets to threads is
to be handled by the scheduler.
2) Vectorization. Tracks in one basket are packed into a vector which is
transported using vectorized navigator and vectorized physics.

Baskets have to be reasonably populated
to exploit vectorization. The value of 20
tracks per basket is used in the tests
presented below. This fixed size of a
basket is chosen very preliminary. Further
developments may have more flexible
policy which will result in a dynamic size
of a basket from some range. Another
term used in this work is a track collection
or simply collection – a group of particles
which reached the boundaries of the
current volume during propagation. A
collection is a result of transporting tracks
of one basket.

Moving to a task-based schema may result in some additional free parameters of the policy that need to be
optimized for better performance. Current policy requires a threshold (I) for the number of tracks waiting to start
a dispatching task. The higher the threshold the less dispatching tasks will be spawned. At the same time each
task will pop more collections. In the prototype there is some number (II) of events to be transported. At one
moment there is only a fixed number (III) of event slots in the memory. The average track number (IV) for each
event is an input parameter. Initially all slots are filled with events – a big number of tracks is injected at once into
one collection. A dispatcher task is started. It pops that collection and distributes all the tracks into several
baskets, pushing filled basket into the feeder queue and spawning propagation tasks for each pushed basket. A
basket is considered to be filled if it has a given number (V) of tracks. While propagating the feeder queue gets
consumed while the particles get sparse in the detector. When it gets to the minimum threshold (VI) a given
number (VII) of older events are being prioritized. This policy is applied to keep the data structures in memory to
a constant level and refresh the feeder queue regularly with efficient baskets. When an event in some slot is fully
transported, a new event is injected into that slot. A number of threads to be used is limited by an explicit call to
tbb::task_scheduler_init with a specified number of threads (VIII) as an argument.

This work is supported by SC ROSATOM and Helmholtz
Association (grant IK-RU-002) via FAIR-Russia Research Center.

Original model based on classic thread-based programming

Dispatcher
thread

Worker
threads

Dispatcher memory

Baskets-per-volume

Queue of filled collections

Queue of empty collections

Queue of empty baskets

Queue of filled baskets

… …

New model based on task-based programming

Dispatcher
task

Propagator
task

Global memory

Baskets-per-volume

Queue of filled collections

Queue of empty collections

Queue of empty baskets

Queue of filled normal and
queue of filled priority baskets

…

Major changes in the baskets and collections flow

Preliminary results

Poor speedup both in pthreads and Intel® TBB models.
Expected some improvement after implementing more realistic

propagation. A detailed “locks and waits” analysis will be
performed to understand communication bottlenecks.

Ptask

Dtask

or

Ptask
Dtask

Ptask Ptask …

Original – pthreads New – Intel® TBB

High identity of results. About 10 times less iterations done at approximately same time.

0 200 400 600 800
time, sec

x0.2

16

12

8

4

Number of priority PropTasks running

Most of the time spent on propagation

Most of the time there exists only
one dispatcher, extra are
spawned when needed

25

30

20

15

10

5

0 5 10 15 20 25 30

Scalability (normalized)
2 sockets – each Intel® Xeon E5-2690 (8 cores + 8 HT)

red – pthreads, green – Intel® TBB

multi-socket
regime

hyperthreaded
regime

Primary problem

1) Follow the development of the other
components and make corresponding
more realistic tests;

2) Study the influence of cache misses to
the propagation performance;

3) Apply and benchmark advanced
features of Intel® TBB: priority of tasks,
affinity of tasks;

4) Test the prototypes on more cores,
particularly on Intel® MIC, tacking into
account the architecture features.

Acknowledgements:

Plans:

Application of Intel® TBB

p

d

p p p

d d

p p p p p p

d d d

p p p

Introduction

References:

The prototype uses a dynamic mechanism to spawn “dispatcher” and “propagator” tasks according to the
basket flow and processing needs. In Intel® TBB there are different techniques for allocating,

spawning and waiting for tasks. The prototype uses “scheduler bypass” and
“continuation passing” templates featuring tbb::empty_task’s as successors.

[1] Rethinking particle transport in the many-core era
towards GEANT. Apostolakis, John; Brun, Rene; Carminati,
Federico; Gheata, Andrei. J. Phys.: Conf. Ser. 396 (2012) 022014

Number of tracks per basket

20

16

12

8

4

0 50 100 150 200 250 300 350 400
x103

iteration №

Number of tracks per basket

20

16

12

8

4

0 5 10 15 20 25 30 35 40
x103

iteration №

Number of baskets in the transport queue
2500

2000

1500

1000

500

0 50 100 150 200 250 300 350 400
x103

iteration №

Number of baskets in the transport queue

0 5 10 15 20 25 30 35 40
x103

iteration №

2500

2000

1500

1000

500

Number of DispTasks running

0 200 400 600 800
time, sec

x0.2

16

12

8

4

Number of normal PropTasks running

0 200 400 600 800
time, sec

x0.2

16

12

8

4

Prototype algorithm

A task-based approach was applied to the particle propagation
prototype using Intel® Threading Building Blocks template
library. The results of the new prototype are close to
expectations, however there are some features that need to be
further understood, including unexpected increase of cache
misses and comparatively low scalability.

Conclusion:

